Change detection analysis of Cropland using Geospatial technique -A case Study of Narsinghpur District

Change detection analysis of Cropland using Geospatial technique -A case Study of Narsinghpur District ( Vol-2,Issue-4,July - August 2017 )

Author: Upadhyay Renu, Nema R.K., Awasthi M.K., Tiwari Y.K.

ijeab doi crossref DOI: 10.22161/ijeab/2.4.33

Keyword: Change detection, Satellite imagery, Crop cover, Supervised Classification technique, Remote Sensing and GIS.

Abstract: Access to accurate and up-to-date information on the extent and distribution of individual crop types, associated with land use changes and practices, has significant value in intensively agricultural regions. Explicit information of croplands can be useful for sustainable water resources, land and agriculture planning and management. Remote sensing, has been proven to be a more cost-effective alternative to the traditional statistically-based ground surveys for crop coverage areas that are costly and provide insufficient information. Satellite images along with ground surveys can provide the necessary information of spatial coverage and spectral responses of croplands for sustainable agricultural management. This study strives to differentiate different crop types and agricultural practices to achieve a higher detailed crop map of the Narsinghpur district.

References:

[1] Conrad C., Dech S., Dubovyk O., Fritsch S., Klein D., Löw F. Zeidler J. (2014) - Derivation of temporal windows for accurate crop discrimination in heterogeneous croplands of Uzbekistan using multitemporal RapidEye images. Computers and Electronics in Agriculture, 103: 63-74. doi: http://dx.doi.org/10.1016/j.compag.2014.02.003.
[2] De Wit A.J.W., Clevers J.G.P.W. (2004) - Efficiency and accuracy of per-field classification for operational crop mapping. International Journal of Remote Sensing, 25 (20): 4091-4112. doi: http://dx.doi.org/10.1080/01431160310001619580.
[3] Duda, R., Hart, P., Stork, D., 2000. Pattern classification (Second Edition). Wiley-Interscienec, 654p.
[4] Duveiller G., Defourny P. (2010) - A conceptual framework to define the spatial resolution requirements for agricultural monitoring using remote sensing. Remote Sensing of Environment, 114 (11): 2637-2650. doi: http://dx.doi.org/10.1016/j.rse.2010.06.001.
[5] Eerens, H., Dong, Q., Ozer, P., Li, X., 2003 A field-based crop and land use map over Sanjiang plain in Heilongjiang derived from multi-temporal imagery of Landsat7-ETM+. Cybergeo: European Journal of Geography, N.247. http://www.cybergeo.eu/index4020.html (accessed 19 Sep. 2003).
[6] Foerster S., Kaden K., Foerster M., Itzerott S. (2012) - Crop type mapping using spectral-temporal profiles and phenological information. Computers and Electronics in Agriculture, 89: 30-40. doi: http://dx.doi.org/10.1016/j.compag.2012.07.015.
[7] Hubert-Moy L., Cotonnec A., Le Du L., Chardin A., Perez P. (2001) - A comparison of parametric classification procedures of remotely sensed data applied on different landscape units. Remote Sensing of Environment, 75: 174-187. doi: http://dx.doi.org/10.1016/S0034-4257(00)00165-6.
[8] Mo X., Liu S., Lin Z., Xu Y., Xiang Y., McVicar T.R. (2005) - Prediction of crop yield, water consumption and water use efficiency with a SVAT-crop growth model using remotely sensed data on the North China Plain. Ecological Modelling, 183 (2): 301-322. doi: http://dx.doi.org/10.1016/j.ecolmodel.2004.07.032.
[9] Murthy C.S., Raju P.V., Badrinath K.V.S. (2003) - Classification of wheat crop with multitemporal images: performance of maximum likelihood and artificial neural networks, International Journal of Remote Sensing, 24 (23): 4871-4890. doi: http://dx.doi.org/10.1080/0143116031000070490.
[10] Ok A.O., Akar O., Gungor O. (2012) - Evaluation of random forest method for agricultural crop classification. European Journal of Remote Sensing, 45 (3): 421-432. doi: http://dx.doi.org/10.5721/EuJRS20124535.
[11] Ortiz M.J., Formaggio A.R., Epiphanio J.C.N. (1997) - Classification of croplands through integration of remote sensing, GIS, and historical database. International Journal of Remote Sensing, 18 (1): 95-105. doi: http://dx.doi.org/10.1080/014311697219295.
[12] Pohl C., Van Genderen J.L. (1998) - Multisensor image fusion in remote sensing: concepts, methods and applications. International Journal of Remote Sensing, 19 (5): 823-854. doi: http://dx.doi.org/10.1080/014311698215748.
[13] Rao, D. P., Raghavaswamy, V., Gautam, N. C., Ravishankar, G., Suresh, L. S. and Mujtaba, S. M. (1991). Land use patterns in deltas of east coast with special' reference to Godavari and Krishna river deltas, Memoirs Of Geol. Soc. of India, No. 22, pp. 51-56.
[14] Reichstein M., Ciais P., Papale D., Valentini R., Running S., Viovy N., Cramer W., Granier A., Ogée J., Allard V., Aubinet M., Bernhofer C., Buchmann N., Carrara A., Grunwald T., Heimann M., Heinesch B., Knohl A., Kutsch W., Loustau D., Manca G., Matteucci G., Miglietta F., Ourcival J.M., Pilegaard K., Pumpanen J., Rambal S., Schaphoff S., Seufert G., Soussana J.-F., Sanz M.-J., Vesala T., Zhao M. (2007) - Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: a joint flux tower, remote sensing and modelling analysis. Global Change Biology, 13 (3): 634-651. doi: http://dx.doi.org/10.1111/j.1365-2486.2006.01224.x.
[15] Van Niel T.G., McVicar T.R. (2004) - Determining temporal windows for crop discrimination with remote sensing: a case study in south-eastern Australia. Computers and Electronics in Agriculture, 45 (1): 91-108. doi: http://dx.doi.org/10.1016/j.compag.2004.06.003.
[16] Villa P., Stroppiana D., Fontanelli G., Azar R., Brivio P.A. (2015) - In-season mapping of crop type with optical and X-band SAR data: a classification tree approach using synoptic seasonal features. Remote Sensing, 7 (10): 12859-12886. doi: http://dx.doi.org/10.3390/rs71012859.
[17] Yang C., Everitt J.H., Murden D. (2011) - Evaluating high resolution SPOT 5 satellite imagery for crop identification. Computers and Electronics in Agriculture, 75 (2): 347-354. doi: http://dx.doi.org/10.1016/j.compag.2010.12.012.

Total View: 184 Downloads: 16 Page No: 1726-1731


Cite this Article:

MLA

Upadhyay Renu, Nema R.K., Awasthi M.K., Tiwari Y.K. et al."Change detection analysis of Cropland using Geospatial technique -A case Study of Narsinghpur District". International Journal of Environment Agriculture and Biotechnology(ISSN: 2456-1878),vol 2, no. 4, 2017, pp.1726-1731 AI Publications doi:10.22161/ijeab/2.4.33

APA

Upadhyay Renu, Nema R.K., Awasthi M.K., Tiwari Y.K., P.(2017).Change detection analysis of Cropland using Geospatial technique -A case Study of Narsinghpur District. International Journal of Environment Agriculture and Biotechnology(ISSN: 2456-1878).2(4), 1726-1731.10.22161/ijeab/2.4.33

Chicago

Upadhyay Renu, Nema R.K., Awasthi M.K., Tiwari Y.K., P.(2017).Change detection analysis of Cropland using Geospatial technique -A case Study of Narsinghpur District. International Journal of Environment Agriculture and Biotechnology(ISSN: 2456-1878).2(4), pp.1726-1731.

Harvard

Upadhyay Renu, Nema R.K., Awasthi M.K., Tiwari Y.K.. 2017."Change detection analysis of Cropland using Geospatial technique -A case Study of Narsinghpur District". International Journal of Environment Agriculture and Biotechnology(ISSN: 2456-1878).2(4):1726-1731.Doi:10.22161/ijeab/2.4.33

IEEE

Upadhyay Renu, Nema R.K., Awasthi M.K., Tiwari Y.K.."Change detection analysis of Cropland using Geospatial technique -A case Study of Narsinghpur District", International Journal of Environment Agriculture and Biotechnology,vol.2,no. 4, pp.1726-1731,2017.

Bibtex

@article { upadhyayrenu2017change,
title={Change detection analysis of Cropland using Geospatial technique -A case Study of Narsinghpur District},
author={Upadhyay Renu, Nema R.K., Awasthi M.K., Tiwari Y.K. , R},
journal={International Journal of Environment Agriculture and Biotechnology},
volume={2},
year= {2017} ,
}