Molecular Cloning of Sucrose Isomerase Gene and Agrobacterium-Mediated Genetic Transformation of Potato (Solanum tuberosum L.) Plants

Molecular Cloning of Sucrose Isomerase Gene and Agrobacterium-Mediated Genetic Transformation of Potato (Solanum tuberosum L.) Plants ( Vol-3,Issue-3,May - June 2018 )

Author: Hemaid I. A. Soliman

ijeab doi crossref DOI: 10.22161/ijeab/3.3.22

Keyword: Potato; Agrobacterium; Sucrose isomerase; Palatinose; B33 promoter; Expression; HPLC.

Abstract: Potato (Solanum tuberosum L.) is one of the most common and important food sources on the planet, and they essential as a staple dietary item for much of the world’s population. Potatoes contain carbohydrates, which lead to high blood sugar. Palatinose (isomaltulose, 6-O-alpha-D-glucopyranosyl-D-fructose) is a functional isomer of sucrose its non-cariogenicity low calorific value and it is an ideal sugar substitute to use in food production. The sucrose isomerase (palI) gene that is obtained from Erwinia rhapontici is one of the most common genes that can convert sucrose into palatinose. In present study, pQE-30- palI construct was succeffuly transformed and expression into E. coli. Sucrose isomerase (palI) gene was cloned and overexpressed into a plant expression vector pBinAR- palI contains sucrose isomerase gene (palI) fused to proteinase inhibitor II signal sequence under CaMV-35S promoter and Octopine Synthase (OCS) terminator. Expression of the protein was verified by western blot assay. Also, expression of the palI gene within the apoplast of transgenic tubers under control of a tuber-specific patatin class I B33 promoter instigated quantitative conversion of sucrose into palatinose. Tuber extracts from potato cv. Désirée were analyzed for their soluble carbohydrate composition using HPLC.

References:

[1] Beaujean, A., Sangwan, R.S., Lecardonne, A. and Sangwan-Norree, B.S. 1998. Agrobacterium-mediated transformation of three economically important potato cultivars using sliced internodal explants: an efficient protocol of transformation. J Exp Bot 49:1589-1595.
[2] Bevan, M. 1984. Binary Agrobacterium vectors for plant transformation. Nucleic Acids Research 12: 8711-8721.
[3] Börnke, F., M. Hajirezaei, and U. Sonnewald. 2001. Cloning and characterization of the gene cluster for palatinose metabolism from the phytopathogenic bacterium Erwinia rhapontici. J. Bacteriol. 183:2425–2430.
[4] Börnke, F., M. Hajirezaei, and U. Sonnewald. 2002. Potato tubers as bioreactors for palatinose production. J Biotechnol.,96 (1):119-24.
[5] Cheetham, P.S.J., 1984. The extraction of a novel isomal- tulose-synthesizing enzyme from Erwinia rhapontici. Biochem. J. 220, 213–220.
[6] Chilton, M.D., Currier, T.C., Farrand, S.K., Bendich, A.J., Gordon, M.P., Nester, E.W. 1974. Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors. Proc Natl Acad Sci USA 71: 3672–3676.
[7] Duncan, D.B. 1955. Multiple range and multiple F tests. Biometrics 1:1-42.
[8] Efstathios, R., Bjorn, K., Marian, O., Wouter, K., Harro, J. B., Richard, G.F., Christian, W.B. 2012. The effects of auxin and strigolactones on tuber initiation and stolon architecture in potato. Journal of Experimental Botany, Vol. 63, No. 12, pp. 4539–4548. doi:10.1093/jxb/ers132.
[9] Goda, T., Hosoya,N. 1983. Hydrolysis of palatinose by rat intestinal sucrase-isomaltase complex. J Japanese Soc.Nutr.Food Sci., 36: 169-173.
[10] Gustafson, V., Mallubhotla, S., MacDonnell, J., Sanyal-Bagchi, M., Chakravarty, B. Wang-Pruski, G., Rothwell, C., Audy, P., DeKoeyer, D., Siahbazi, M. and Regan, S. 2006. Transformation and plant regeneration from leaf explants of Solanum tuberosum L. cv. ‘Shepody’ Plant Cell, Tissue and Organ Culture, 85: 361–366.
[11] Hajirezaei, M.R., Takahata, Y., Trethewey, R.N., Willmitzer, L., Sonnewald, U., 2000. Impact of elevated cytosolic and apoplastic invertase activity on carbon metabolism during potato tuber development. J. Exp. Bot. 51, 439–445.
[12] Höfgen, R., Willmitzer, L. 1990. Biochemical and genetic analysis of different patatin isoforms expressed in various organs of potato (Solanum tuberosum).Plant Sci.66, 221–230.
[13] Joseph, N., Anbazhagan, M. and Srinivasan, S. (2015). In vitro growth of potato plant (in vitro tuberization) INT J CURR SCI 2015, 17: E 29-36.
[14] Keil, M., Sanchez-Serrano, J., Schell, J. and Willmitzer, L. 1986. Primary structure of a proteinase inhibitor II gene from potato. Nucleic Acids Res. 14: 5641-5650.
[15] Lina, B. A. R., D. Jonker, and G. Kozianowski. 2002. Isomaltulose (Palatinose): a review of biological and toxicological studies. Food Chem. Toxicol. 40:1375–1381.
[16] Minami, T., Fujiwara,T., Ooshima,T., Nakajima,Y. and Hamada,S. 1990. Interaction of structural isomers of sucrose in the reaction between sucrose and glucosyltransferases from mutans streptococci. Oral Microbiol. Immunol. 5:189-194.
[17] Molla, M.M.H., Nasiruddin, K.M., Al-Amin, M., Haque, M.S. and Maniruzzaman (2011). Agrobacterium-mediated Transformation in Potato. Thai Journal of Agricultural Science, 44(2): 93-102.
[18] Murashige, T., Skoog, F., 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiology Plantarum 15, 473–497.
[19] Oparka, K.J., Viola, R., Wright, K.M., Prior, D.A.M., 1992. Sugar transport and metabolism in the potato tuber. In: Farrar, J.F., Gordon, A.J., Pollock, C.J. (Eds.), Carbon Partitioning Within and Between Organisms. BIOS Scien- tific Publishers, Oxford, pp. 91–114.
[20] Park, Y.D., Ronis D.H., Boe, A.A., Cheng, Z.M. 1995. Plant regeneration from leaf tissues of four North Dakota genotypes of potato (Solanum tuberosum L.)journal 72,329-338.
[21] Price, J.M., Biava, C.G., Oser, B.L., Vogin, E.E., Steinfield, J. and Ley, H.L. 1970. `Bladder tumors in rats fed cyclohexylamine or high doses of a mixture of cyclamate and saccharin’. Science 167, 1131-1132. DOI: 10.1126/science.167.3921.1131.
[22] Rocha-Sosa, M., Sonnewald, U., Frommer, W., Stratmann, M., Schell, J., Willmitzer, L., 1989. Both developmental and metabolic signals activate the promoter of a class I patatin gene. EMBO J. 8, 23–29.
[23] Rui-juan, R., Peng-cheng, W.U., Jin-ping, L.A.N., Han-fu, W.E.I., Jian, W.E.I., Hao CHEN, Jia-nan SHI, Yu-jie, H.A.O, Li-juan, L.IU, Shi-juan DOU, Li-yun LI, Lin, W.U., Si-qi, L.I.U, Chang-cheng, Y.I.N., Guo-zhen, L.I.U. 2016. Western blot detection of PMI protein in transgenic rice. Journal of Integrative Agriculture, 15(4): 726–734.
[24] Saha, D., Rana, R.S., Sureja, A.K., Verma, M., Arya, L., Munshi, A.D. 2013. Cloning and characterization of NBS-LRR encoding resistance gene candidates from Tomato Leaf Curl New Delhi Virus resistant genotype of Luffa cylindrical Roem. Physiol Mol Plant Pathol., 81:107–117.
[25] Sanz, M.J., Mingo-Castel, A., Van Lamieren, A.A.M., Vreugdenhill, D 1996. Changes in the microtubular cytoskeleton precede in Vitro tuber formation in potato. Protoplasma 191, 46-54.
[26] Sarker, R.H., Mustafa, B.M. 2002. Regeneration and Agrobacterium-mediated genetic transformation of two indigenous Potato varieties of Bangladesh. Plant Tissue Culture, 12(1): 69-77.
[27] Sonnewald, U., Hajirezaei, M.R., Kossmann, J., Heyer, A., Trethewey, R.N., Willmitzer, L., 1997. Increased potato tuber size resulting from apoplastic expression of a yeast invertase. Nat. Biotech. 15, 794–797.
[28] Takazoe, I. 1989. Palatinose—an isomeric alternative to sucrose, p. 143–167. In T. H. Grenby (ed.), Progress in sweeteners. Elsevier, Barking, United Kingdom.
[29] Tauberger, E., Hoffman-Benning, S., Fleischer-Notter, H., Willmitzer, L., Fisahn, J., 1999. Impact of invertase over- expression on cell size, starch granule formation and cell wall properties during tuber development in potatoes with modified carbon allocation patterns. J. Exp. Bot. 50, 477– 486.
[30] Veale, M. A., Slabbert, M.M. and Van Emmenes, L. 2012. Agrobacterium-mediated transformation of potato cv. Mnandi for resistance to the potato tuber moth (Phthorimaea operculella). South African journal of Botany Vol. 80: 67-74.
[31] Von Schaewen, A., Stitt, M., Schmidt, R., Sonnewald, U., Willmitzer, L., 1990. Expression of a yeast derived inver- tase in the cell wall of tobacco and Arabidopsis plants leads to accumulation of carbohydrate and inhibition of photo- synthesis and strongly influences growth and phenotype of transgenic plants. EMBO J. 9, 3033–3044.
[32] Watzlawick, H., Mattes, R. 2009. Gene cloning, protein characterization, and alteration of product selectivity for the trehalulose hydrolase and trehalulose synthase from Pseudomonas mesoacidophila, MX-45. Appl. Environ. Microbiol.75, 7026–7036.
[33] Webb, K.J., Osifo, E.O. and Henshaw, G.G. 1983. Shoot regeneration from leaflet discs of six cultivars of potato (Solanum tuberosum subsp, tuberosum). Plant Science Letters 30: 1-8.
[34] Xuguo, D., Sheng, C., Yixin, A., Jing, W. 2016. Enhancing the Thermostability of Serratia plymuthica Sucrose Isomerase Using B-Factor-Directed Mutagenesis. journal.pone. 11(2): 1-16. doi: 10.1371/journal.pone.0149208.
[35] Yee, S., Stevens, B., Coleman, S., Seabrook J.E.A., Li, X.Q. 2001. High efficiency regeneration in vitro from potato petioles with intact leaflets. American journal of potato research 78, 151-157.
[36] Zhang, D.H., Li, N., Lok, S.M., Zhang, L.H. and Swaminathan, K. 2003. Isomaltulose synthase (PalI) of Klebsiella sp. LX3 – Crystal structure and implication of mechanism. J. Biol. Chem. 278,35428–35434.

Total View: 67 Downloads: 12 Page No: 0864-0874


Cite this Article:

MLA

Hemaid I. A. Soliman et al."Molecular Cloning of Sucrose Isomerase Gene and Agrobacterium-Mediated Genetic Transformation of Potato (Solanum tuberosum L.) Plants". International Journal of Environment Agriculture and Biotechnology(ISSN: 2456-1878),vol 3, no. 3, 2018, pp.0864-0874 AI Publications doi:10.22161/ijeab/3.3.22

APA

Hemaid I. A. Soliman, P.(2018).Molecular Cloning of Sucrose Isomerase Gene and Agrobacterium-Mediated Genetic Transformation of Potato (Solanum tuberosum L.) Plants. International Journal of Environment Agriculture and Biotechnology(ISSN: 2456-1878).3(3), 0864-0874.10.22161/ijeab/3.3.22

Chicago

Hemaid I. A. Soliman, P.(2018).Molecular Cloning of Sucrose Isomerase Gene and Agrobacterium-Mediated Genetic Transformation of Potato (Solanum tuberosum L.) Plants. International Journal of Environment Agriculture and Biotechnology(ISSN: 2456-1878).3(3), pp.0864-0874.

Harvard

Hemaid I. A. Soliman. 2018."Molecular Cloning of Sucrose Isomerase Gene and Agrobacterium-Mediated Genetic Transformation of Potato (Solanum tuberosum L.) Plants". International Journal of Environment Agriculture and Biotechnology(ISSN: 2456-1878).3(3):0864-0874.Doi:10.22161/ijeab/3.3.22

IEEE

Hemaid I. A. Soliman."Molecular Cloning of Sucrose Isomerase Gene and Agrobacterium-Mediated Genetic Transformation of Potato (Solanum tuberosum L.) Plants", International Journal of Environment Agriculture and Biotechnology,vol.3,no. 3, pp.0864-0874,2018.

Bibtex

@article { hemaidi.a.soliman2018molecular,
title={Molecular Cloning of Sucrose Isomerase Gene and Agrobacterium-Mediated Genetic Transformation of Potato (Solanum tuberosum L.) Plants},
author={Hemaid I. A. Soliman , R},
journal={International Journal of Environment Agriculture and Biotechnology},
volume={3},
year= {2018} ,
}