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Abstract— Heat stress is the major constraint for wheat production causing significant drops in the yield 

and potential productivity making it difficult to achieve the target yield by 2030, increasing food insecurity 

in Nepal. The main aim of the study is to help plant breeders to select appropriate heat stress-tolerant indices 

for increasing wheat yield by coping with the major problem of heat stress. The experiment holds the study 

for three years at the Institute of Agriculture and Animal Science (IAAS), Paklihawa campus. The 

experimental trial was of alpha-lattice design with 5 blocks and 4 plots. There were in total of 2 replications 

each of 20 genotypes. MP (Mean Productivity) had the highest strong correlation with the stress tolerance 

indices followed by STI (Stress Tolerance Index) for all three years, whereas YSI (Yield Stability Index) had 

the lowest tolerance index with a negative correlation for the years 2019 and 2021. The selection of MP and 

STI is encouraged for the production of heat-stress-tolerant varieties for high-yielding with tolerance. 
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I. INTRODUCTION 

Wheat is the most important food crop in the world and 

Nepal in terms of both area coverage and productivity. As 

of 2021, wheat is grown on 708,000 hectares which 

produced 218,500 metric tons in Nepal which represents an 

almost six-fold increase in yield from the same amount of 

land since 1960. Asia is the largest import region, followed 

by Africa, South America, Central America, and Europe 

(M. R. Poudel et al., 2020). But wheat in Nepal still faces 

consequences of climate change, in the form of extreme 

weather events like increasing temperatures, and erratic 

rainfall patterns, which threatens to reduce wheat yield by 

30% by 2030.  

Heat stress is a key abiotic stress affecting crop and cereal 

production in all regions of Nepal. The ability of wheat to 

adapt to a wide range of ecological conditions has made it 

one of the most important crops worldwide, but heat stress 

has severe negative effects on yield, especially when 

associated with other stress factors. 

Crop output around the world will be severely hampered by 

global climate change (Bishwas et al., 2021). An increase in 

the Earth’s near-surface temperatures is one of the most 

critical aspects of global climate change (P. B. Poudel et al., 

2021a). This rise in temperature is frequently linked to 

rising levels of carbon dioxide (CO2) and other heat-

trapping greenhouse gases including methane, nitrous 

oxide, ozone, and water vapor in the atmosphere. At the 

current rate of greenhouse gas emissions, atmospheric CO2 

levels are expected to double by the end of the century, 

raising surface temperatures by 1.8–5.8°C (Farooq et al., 

2011). Cereals are the primary source of our diet. Heat and 

drought stress have a substantial impact on their output 

(Wasaya et al., 2021). Climate change will have a huge 

impact on the yield of essential food crops like wheat in 

different parts of the world (Hossain, A. et al., 2012). 
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Wheat (Triticum aestivum L.) is one of the world’s most 

important cereal crops, belonging to the Poaceae family (M. 

R. Poudel et al., 2020). It is a strategic crop that plays an 

important role in the economies of developing countries 

(Yassin et al., 2019). Wheat (Triticum aestivum L.) 

cultivation dates back to 10000 years ago, when the hunter-

gatherer society transitioned to agriculture. Wheat is a major 

human food crop that ranks among the world’s top three 

cereal bowls due to its versatility, nutritional content, and 

high yield potential (Reynolds et al., 2007). 35 developed 

cultivars, 540 landraces, and 10 wild cousins exist in Nepal 

(Bishwas et al., 2021). It feeds about 35 percent of the 

world’s population in more than 40 nations, including 

Nepal, and supplies over 20% of calories and protein for 

human nutrition (Al-Naggar et al., 2020). Wheat is planted 

on 754243 hectares in Nepal, accounting for 20.13 percent 

of total cereal production and yielding 2.29 tons per hectare 

(P. B. Poudel et al., 2020). Arid and semiarid regions are 

home to the majority of wheat-growing areas (Rahman 

&amp; Riad, 2020). Due to its importance as a staple crop 

in many nations, durum wheat accounts for more than half 

of the total wheat-growing area in the Mediterranean region 

(El-Rawy &amp; Hassan, 2014). The durum grain is used 

to make a variety of foods, including bread, couscous, 

freekeh, bulgur, and, most notably, pasta (Mehmood et al., 

2020). Pasta is widely acknowledged as a healthy addition 

to a well-balanced diet, and consumer demand is reflected 

in rising pasta production (Guzmán et al., 2016). In 2014, 

the global wheat trade recorded 153.0 million tons, while 

wheat use was 711.7 million tonnes. Asia is the biggest 

import region, followed by Africa, South America, Central 

America and Europe (M. R. Poudel et al., 2020). 

Wheat’s growth and development are governed by specific 

abiotic and biotic needs. Temperature is a crucial abiotic 

element that influences crop growth and development (Li et 

al., 2011). Heat stress, however, is a severe threat to 

agricultural output around the world due to high ambient 

temperatures (El-Esawi et al., 2019). The worldwide mean 

ambient temperature is expected to rise by 6 degrees Celsius 

by the end of the twenty-first century. Wheat is extremely 

susceptible to heat stress. It was estimated that a 1°C 

increase in temperature would result in a 6% decrease in 

global wheat yield (P. B. Poudel et al., 2021b). Drought 

(water stress) and heat stress (increases in above-optimal air 

temperatures) sometimes occur together, but their impact on 

wheat’s physiological, biological, and biochemical 

processes can be vastly different. Grain filling time, 

photosynthetic ability, and pace of assimilating 

translocation are all affected by high temperatures (Hossain 

et al., 2017). Drought is the most common abiotic stress that 

impacts wheat production, lowering grain yields by roughly 

30%. (H.R. Balouchi, 2010). Furthermore, both genetic and 

environmental factors have a direct impact on wheat quality 

(El Gataa et al., 2021). Drought stress influences the 

quantity of seeds per spike and kernel weight, two critical 

components of grain yield, during flowering and grain 

filling (H.R. Balouchi, 2010). Such heat occurrences can 

diminish both grain number and individual size, lowering 

yield (Farooq et al., 2011). For example, yield losses of 15% 

were related to every day above 30°C during or around 

flowering in a correlation study based on data from over 600 

field experiments in southern Australia (Shirdelmoghanloo 

et al., 2016). 

High temperatures and drought stress at the same time 

shorten the grain-filling period, especially in dry land and 

rain-fed farming areas (Prasad &amp; Staggenborg, 2008). 

Wheat breeders’ key difficulty in these places is selecting 

genotypes that can endure heat stress and water scarcity 

conditions at the same time (Tahmasebi et al., n.d). Breeders 

frequently utilize indirect selection and use well-correlated 

qualities with grain yield to improve grain output in dry 

conditions since grain yield is a complicated trait influenced 

by many genes (Bashyal et al., 2021). Plant height, days to 

heading, days to maturity, spike length, number of spikelets 

per spike, number of grains per spike, thousand kernel 

weight, grain yield per spike, grain yield, biological yield, 

and harvest index are some of the yield traits that breeders 

have used to assess drought stress on wheat plants (Hossain, 

A. et al., 2012). Due to changes in various edaphic and 

climatic conditions, several high-yielding cultivars that 

were previously recommended are now losing their yield 

capacity (P. B. Poudel et al., 2020). Despite the fact that 

drought and heat stress have been widely researched 

separately, little is known about how they interact to effect 

agricultural output (Telfer et al., 2018). The few studies that 

looked at the combined impacts of drought and heat stress 

found that the combination of drought and heat stress had a 

much more negative impact on crop growth and 

productivity than when each stress was applied separately 

(Mkhabela et al., 2019). Furthermore, it was discovered that 

the combination of drought and heat stress alters 

physiological processes like as photosynthesis, lipid 

accumulation, and transcript expression (Prasad & 

Staggenborg, 2008). The negative effects of temperature 

could be reduced by altering planting time to an optimal 

date and employing various genetic techniques to generate 

crop plants with enhanced thermo-tolerance (Taheri et al., 

2011). However, a detailed understanding of plant 

physiological reactions to high 

temperatures, heat tolerance mechanisms, and potential 

solutions for enhancing crop thermo- resistance is required 

for this. This study was carried out to discover heat-tolerant 

and susceptible wheat types for future breeding initiatives 

in this environment (Ahmed & Fayyaz-Ul-Hassan, 2015). 
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II. MATERIALS AND METHODS 

2.1 Experimental material, design, site, and entries of 

genotypes 

20 entries of wheat genotypes as given in Table 1 were 

grown at the agronomy field of IAAS, Paklihawa 

(27.4809414 °N, 83.4468789 ° E) in Bhairahawa of 

Rupandehi district. Rupandehi is a major wheat production 

district of Nepal with suitable weather conditions, favorable 

monsoons, and enough irrigation availability. National 

Wheat Research Program (NWRP) is also located in 

Bhairahawa, Rupandehi, promoting research on wheat. The 

experimental site area is depicted in Figure 1, which is 

prepared via ArcGIS software.  

 

Fig.1. A. Map of Nepal showing Rupandehi district in pink color B. Map of Rupandehi district showing Siddharthanagar 

municipality in blue color C. Map of Siddharthanagar municipality with a green dot representing IAAS, Paklihawa 

 

Table 1: List of wheat genotypes grown in the experimental plots along with their origin. 

S.N. Name of wheat genotypes Origin 

1. Gautam Nepal 

2. BL 4669 Nepal 

3. NL 1412 CIMMYT, Mexico 

4. BL 4407 Nepal 

5. NL 1368 CIMMYT, Mexico 

6. NL 1417 CIMMYT, Mexico 

7. Bhirkuti CIMMYT, Mexico 

8. BL 4919 Nepal 

9. NL 1376 CIMMYT, Mexico 

10. NL 1179 CIMMYT, Mexico 

11. NL 1350 CIMMYT, Mexico 

12. NL 1387 CIMMYT, Mexico 

13. NL 1350 CIMMYT, Mexico 

14. NL 1420 CIMMYT, Mexico 

15. NL 1384 CIMMYT, Mexico 

16. NL 1346 CIMMYT, Mexico 
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17. NL 1404 CIMMYT, Mexico 

18. NL 1413 CIMMYT, Mexico 

19. NL 1386 CIMMYT, Mexico 

20. NL 1381 CIMMYT, Mexico 

 

Each entry was sown in 26th December, 2021 on a plot 

surface of 10 m2 per genotype. A single plot consisted of 10 

rows at a spacing of 25 cm where the seeds were sown 

following continuous sowing method. Recommended dose 

of 50:50:20 kg NPK/ ha fertilizer was applied as basal 

application. Weeds were controlled manually. This same 

arrangement was followed in adjacent field to implement 

the irrigated condition. Irrigation was provided via pipes. 

The experiment was conducted on alpha lattice design with 

two replications as shown in Figure 2. The replications were 

separated at a distance of 1m. 4 plots were arranged in a 

single block, resulting in 5 blocks per replication. 

Fig.2: Experimental layout of the plots under drought and 

irrigated conditions 

 

2.2 Traits analyzed 

Ten sample plants were selected randomly from each plot 

to collect data. Grain yield and Yield attributing traits like 

Plant height (PH), Spike length (SL), Spike weight (SW), 

Spike per m² area (S/m²), Number of grains per spike 

(NGPS), Number of spikelets per spike (NSPS), and 1000 

kernels weight or Test weight were noted. 

2.3. Statistical analysis 

Data entry and processing was conducted through Microsoft 

Office Excel 2016.  The entered data were analyzed via IBM 

SPSS Statistics 25 Version 25 to compute Pearson’s 

correlation among variables at 5 and 1% levels of 

significance. Path coefficient analysis was performed using 

Microsoft Office Excel 2016. 

The stress tolerance indices were calculated by the 

following relationships: 

1. Tolerance Index (TOL)TOL = Yp – Ys  

(Ramirez-Vallejo et. al., 1998) 

2. Stress Susceptibility Index (SSI) =            

  (Hossain et.al., 1990) 

 

3. Yield Stability Index (YSI)YSI = Ys/Yp (Fischer et.al., 

1978) 

4. Mean Productivity (MP)= 
(𝑌𝑝+ 𝑌𝑠)

2
 (Bouslama et.al., 

1984) 

5. Geometric Mean Productivity (GMP) = 

√𝑌𝑝 + 𝑌𝑠 (Khan et.al., 2014) 

6. Stress Tolerance Index (STI) = 
𝑌𝑝 × 𝑌𝑠 

𝑌𝑝2
 (Khan et.al., 

2014) 

 

Where, Yp and Ys are the grain yield of genotypes under 

normal and heat stress conditions respectively. Whereas, Yp 

and Ys are mean yield of all genotypes under normal and 

heat stress conditions respectively. The grain yield was 

measured in term of kilogram per hectare. 

The experimental data were processed using Microsoft 

Excel 2010 and analysis of variance was conducted using 

ADEL-R (Analysis and design of experiments with R for 

Windows) developed by CIMMYT, Mexico. Stat Graphics 

software was used to perform correlation, principal 

component and biplot analysis. 

 

III. RESULT AND DISCUSSION 

3.1. Correlation among Yp, Ys, and stress tolerance 

indices: 

Correlation analysis showed low, positive, and insignificant 

relations between grain yields under normal and stress 

conditions i.e. 0.331 and 0.199 in 2018 and 2021 

respectively.(Khan and Kabir 2015), (Puri et al., 2020) and 

(Nouri et al. 2011) also reported the same result. Thus, it is 

not accurate to select heat-tolerant genotypes on the basis of 
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their performance in normal conditions. In 2021, Yp and Ys 

showed positive and highly significant relationships with 

each other (1.000). It implies that the selection of heat-

tolerant genotypes on basis of their performance under 

normal conditions is applicable. TOL positively associated 

with Yp in 2018 while it has a positive and highly 

significant association with Yp in 2019 and 2021. While 

TOL has a negative association with Ys in the years 2018 

and 2021. Similar results were reported by (Tahir et al., 

2022).It was in accordance with results reported by (Puri 

and Gautam 2015). (Nouri et al. 2011) suggested that a 

lower value of TOL is favorable for the selection of high-

yielding genotypes under stress conditions.  

YSI has a positive and highly significant relation with grain 

yield under stress conditions in 2018. Furthermore, YSI has 

a negative and highly significant association with Yp in 

2019. In 2018 and 2021, SSI shows a negative association 

with grain yield under stress conditions in accordance with 

the result of (Puri et al. 2020). MP, GMP, and STI have 

possessed a positive correlation with grain yield at normal 

and stress conditions during all three years. These results are 

in conformity with those obtained by (Kamrani, Hoseini, 

and Ebadollahi 2018), (Sareen, Tyagi, and Sharma 2012) 

and (Puri and Gautam 2015).Hence, MP,GMP and STI 

should be considered while selecting the high yield potential 

genotypes under both normal and stress condition. 

Table 1: Correlation coefficient between grain yield of wheat genotypes and heat stress indices under normal and heat stress 

conditions in 2018 

       Correlations-2018 

 

Table 2: Correlation coefficient between grain yield of wheat genotypes and heat stress indices under 

normal and heat stress conditions in 2019 

Correlations- 2019 

  Yp Ys TOL YSI SSI MP GMP STI 

Yp 1 1.000** 1.000** -.987** .987** 1.000** 1.000** .998** 

Ys 1.000** 1 1.000** -.987** .987** 1.000** 1.000** .998** 

TOL 1.000** 1.000** 1 -.987** .987** 1.000** 1.000** .998** 

YSI -.987** -.987** -.987** 1 -1.000** -.987** -.988** -.976** 

SSI .987** .987** .987** -1.000** 1 .987** .988** .976** 

MP 1.000** 1.000** 1.000** -.987** .987** 1 1.000** .998** 

GMP 1.000** 1.000** 1.000** -.988** .988** 1.000** 1 .998** 

STI .998** .998** .998** -.976** .976** .998** .998** 1 

 

 

 

 

 

 

  Yp Ys TOL YSI SSI MP GMP STI 

Yp 1 0.331 0.295 0.008 -0.008 .711** .552* .584** 

Ys 0.331 1 -.804** .945** -.945** .899** .965** .958** 

TOL 0.295 -.804** 1 -.952** .952** -.463* -.629** -.602** 

YSI 0.008 .945** -.952** 1 -1.000** .708** .831** .810** 

SSI -0.008 -.945** .952** -1.000** 1 -.708** -.831** -.810** 

MP .711** .899** -.463* .708** -.708** 1 .975** .985** 

GMP .552* .965** -.629** .831** -.831** .975** 1 .994** 

STI .584** .958** -.602** .810** -.810** .985** .994** 1 
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Table 3. Correlation coefficient between grain yield of wheat genotypes and heat stress indices under normal and heat stress 

conditions in 2021 

Correlation 2021 
 

  Yp Ys TOL YSI SSI MP GMP STI 

Yp 1 0.199 .847** -.723** .723** .894** .836** .854** 

Ys 0.199 1 -0.352 .522* -.522* .616** .703** .678** 

TOL .847** -0.352 1 -.974** .974** .520* 0.417 .448* 

YSI -.723** .522* -.974** 1 -1.000** -0.343 -0.234 -0.266 

SSI .723** -.522* .974** -1.000** 1 0.343 0.234 0.266 

MP .894** .616** .520* -0.343 0.343 1 .993** .996** 

GMP .836** .703** 0.417 -0.234 0.234 .993** 1 .998** 

STI .854** .678** .448* -0.266 0.266 .996** .998** 1 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

 

IV. CONCLUSION 

Under the observation of three years data of stress tolerance, 

MP seems to have the highest strong correlation with the Yp 

and Ys followed by STI in all those years accordingly. 

Therefore, these indices are found suitable for selection of 

high yielding genotypes under both conditions. It can be 

recommended that for future research, these results could 

contribute to the development of varieties with better heat 

tolerance. It is clear that wider genetic diversity should be 

explored if greater heat stress resilience is to be achieved in 

wheat breeding programmes to cultivate in the heat prone 

areas of Nepal. 
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