

Traditional Indian Methods to Preserve Food

Simran Kaur Arora¹, Neetu Dobhal², Bhavesh Tiwari³, Anamika Gupta⁴

¹Assistant Professor, Department of Food Science & Technology, College of Agriculture, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India 263145

²Assistant Professor, Department of Food & Nutrition, College of Community Science, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India 263145

³Research Scholar, Department of Food Science & Technology, College of Agriculture, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India 263145

⁴Research Scholar, Department of Food & Nutrition, College of Community Science, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India 263145

Received: 25 May 2025; Received in revised form: 20 Jun 2025; Accepted: 25Jun 2025; Available online: 30 Jun 2025

©2025 The Author(s). Published by Infogain Publication. This is an open-access article under the CC BY license

(<https://creativecommons.org/licenses/by/4.0/>).

Abstract— India has a long tradition, spanning thousands of years, of preserving fruits, vegetables, cereals, and milk using natural methods that help extend their shelf life while maintaining their taste, nutritional value, and safety. India's traditional food preservation methods include sun drying, pickling, fermentation, smoking, and brining, which help extend the shelf life of fruits, vegetables, cereals, and dairy by controlling moisture and microbial growth. Additionally, techniques like granary storage, biopesticides, parboiling, roasting, and milk processing ensure the long-term safety and usability of grains, pulses, and dairy products. Various traditional techniques incorporate biological, chemical, and physical principles that prevent spoilage and microbial contamination. These traditional Indian preservation techniques have been passed down through generations and have helped communities survive food shortages and seasonal variations. These traditional Indian preservation techniques reflect the country's deep-rooted knowledge of natural food storage. They help reduce food waste, enhance flavors, and provide food security without relying on artificial preservatives. With the growing preference for organic and chemical-free food preservation, these age-old methods are regaining popularity in modern kitchens.

Keywords— *Cereals, Dairy, Fruits and Vegetables, Natural method, Preservation.*

I. INTRODUCTION

India has a long history of preserving fruits, vegetables, cereals, and milk using traditional techniques that ensure safety, extend shelf life, and enhance nutritional value. These methods, dating back thousands of years, are based on scientific principles such as moisture control, pH reduction, and microbial inhibition. The traditional Indian food preservation methods were sun drying, pickling, fermentation, and brining, which help extend the shelf life of fruits, vegetables, and spices by reducing moisture and microbial growth [1]. Smoking, roasting, and underground storage were used for preserving meat, cereals, and root vegetables by controlling temperature and humidity. Granary storage and natural biopesticides like neem leaves and turmeric protected grains from pests, while parboiling

and drying (*Chawal Pakane aur Sukhaane ki Prakriya*) enhanced the longevity of rice. Dairy preservation techniques such as curdling (*Dahi banana*), butter making (*Makkhan banana*), ghee-making (*Makkhan se Ghee nikalna*), and milk reduction into *khoya* or powder ensured extended storage and usability of milk products. The preservation of fruits, vegetables, cereals, and dairy has played a critical role in sustaining Indian food traditions while reducing waste.

II. TRADITIONAL INDIAN METHODS TO PRESERVE FRUITS AND VEGETABLES

One of the most widely used preservation techniques is sun drying (*dhoop mein sukhaana*), practiced since the Indus Valley Civilization around 2000 BCE. This method reduces

the water activity (a_w) of food below 0.6, preventing microbial growth. Common sun-dried products include amchur (dry mango powder), *kasuri methi* (dried fenugreek leaves), and red chilies. Sun drying is particularly effective in hot and dry climates, requiring temperatures between 45–60°C for optimal drying.

Another popular method is pickling (achaar), which dates back to the Vedic period (1500–500 BCE). Pickles are preserved using high salt concentrations (15–20%) or acidic solutions that lower pH below 4.5, creating an environment unsuitable for spoilage organisms. Mango pickle, lemon pickle, and carrot-radish pickle are well-known examples [2]. Fermentation is another traditional method used in India to preserve food while boosting its nutritional value. Historical evidence suggests that fermentation was practiced in India as early as 1000 BCE, with references found in Ayurvedic texts describing the health benefits of fermented foods. *Kanji*, a probiotic-rich drink made from fermented black carrots and mustard seeds, is commonly consumed in North India. Similarly, *Gundruk*, made from fermented leafy greens, has been a staple in the Northeast for centuries. In some states, bamboo shoots are fermented and stored for later use in curries. Fermentation relies on beneficial lactic acid bacteria (LAB) to preserve food. Fermented products like *kanji* (fermented black carrot drink) and *gundruk* (fermented leafy greens) have a pH below 4.0, making them naturally resistant to harmful microbes [3]. Thus, fermentation not only extends shelf life but also supports gut health [4]. However, improper fermentation can lead to spoilage, making it essential to follow proper hygiene practices.

Brining (salt preservation) is another ancient technique that has been practiced for over 2000 years, particularly in coastal regions where salt was easily available. This technique prevents microbial growth and is commonly used in India to preserve vegetables like raw mangoes, bamboo shoots, and gooseberries (*amla*) [2, 5]. High salt concentration (20–25%) causes plasmolysis in microbial cells, preventing spoilage. Meanwhile, sugar syrup preservation, mentioned in Ayurvedic texts such as the Charaka Samhita (300 BCE–200 CE), uses high sucrose concentrations (60–70%) to reduce water activity ($a_w < 0.8$), preventing microbial growth. *Amla murabba* and mango *chutney* are common examples. In some regions, smoking (*Dhuan mein Sukhaana*) and roasting (*Bhunaai/Parching*) have been used for over 2000 years to preserve food by exposing it to phenol- and aldehyde-rich smoke, which has antimicrobial properties. Smoked red chilies and dried brinjal slices are traditional examples.

For long-term storage, root cellaring has been practiced for over 1000 years, particularly for root vegetables like

potatoes, onions, garlic, and pumpkins. This method maintains cool temperatures (0–10°C) and high relative humidity (85–95%) to slow enzymatic activity and prevent spoilage.

III. TRADITIONAL INDIAN METHODS FOR CEREALS AND LEGUMES PRESERVATION

Beyond fruits and vegetables, cereal preservation has played a critical role in Indian agriculture. Parboiling and drying of rice, a technique developed over 2000 years ago, involves partially boiling rice in its husk before drying and milling. It gelatinizes starch and inactivates enzymes, improving storage stability. Parboiled rice has a lower moisture content (12–14%), reducing the risk of fungal growth. This method not only extends the shelf life but also improves the nutritional content of the rice. Traditional granary storage (*(Bhandaran)*) involves keeping grains in mud bins, bamboo baskets, or metal silos at low humidity (<14%) and temperatures below 25°C to prevent mold and insect infestation. In rural India, grains like wheat, millet (*bajra*), sorghum (*jowar*), and lentils are often stored in bamboo baskets, earthen pots, or underground silos to keep them dry and prevent insect infestations. Aged rice (*pohoya*) was highly valued and stored for one to two years to enhance its texture and flavor. Traditional techniques such as mixing grains with neem leaves, ash, or dried red chilies were used as natural insect repellents [6]. Neem leaves and turmeric powder contain azadirachtin, which repels insects without the requirement of harmful insecticides/chemicals. Roasting (*Bhunaai/Parching*) helps extend the shelf life of cereals and pulses, with common examples including roasted *chana*, *murmura* (puffed rice), and roasted wheat.

IV. TRADITIONAL INDIAN METHODS TO PRESERVE MILK

Milk preservation in India also dates back to the Vedic period (1500 BCE) and includes techniques such as curdling, ghee-making, and dehydration. Fresh milk spoils quickly in a hot climate, so Indians developed techniques to convert milk into curd (*dahi*), butter, *ghee*, *paneer* (cottage cheese), *khoa* (reduced milk), and *chhana* (soft cheese). Curd (*dahi*) production involves fermenting milk with *Lactobacillus* bacteria at 35–42°C, reducing pH to 4.6 and ensuring preservation for 2–3 days. The process of making ghee (clarified butter), which involves boiling butter to remove moisture, was widely practiced in ancient India as a way to store dairy for months without refrigeration. It is made by heating *makkhan* to 110–120°C which removes moisture and prevents microbial growth, making it shelf-

stable for months [7]. *Ghee* was not only a staple in Indian cuisine but also had religious and medicinal significance in Ayurveda. *Khoa*, used in sweets like *gulab jamun*, *barfi*, and *peda*, is made by slow-cooking milk until it thickens and can be stored for weeks. *Chhena*, which is used in making Bengali sweets like *rasgulla* and *sandesh*, is another traditional dairy product that dates back centuries [6, 8]. *Khoa* and *chhena*, have moisture levels below 30% and 50%, respectively, ensuring longer shelf life.

Kheer is a traditional Indian dessert that has been enjoyed for centuries. It is a sweet rice pudding made with milk, rice, sugar, and flavored with cardamom, saffron, nuts, and sometimes rose water or kewra essence [9]. *Kheer* is deeply rooted in Indian culture and is often prepared during festivals, religious ceremonies, and special occasions like weddings and birthdays. *Kheer* has a long history in India, dating back to ancient times. It is believed that "Payasam" (a South Indian version of *kheer*) was offered as prasadam (sacred food) in temples like the Jagannath Temple in Odisha [10, 11]. The dish has also been mentioned in medieval Indian texts as a delicacy enjoyed in royal kitchens. Buttermilk (*chaas*) and whey (*takra*) are also commonly consumed traditionally as fermented dairy drinks that aid digestion [24].

V. SPECIALITY OF TRADITIONAL INDIAN METHODS OF FOOD PRESERVATION

Traditional Indian food preservation methods are natural, sustainable, and chemical-free because they rely on locally available resources, climate conditions, and time-tested techniques instead of artificial preservatives. Sun drying reduces moisture content, preventing microbial growth, while pickling and brining use high salt, oil, or acidic solutions to create an environment where spoilage organisms cannot thrive. Techniques like pickling, drying, and fermentation not only preserve food but also enhance its flavor, texture, and aroma. For example, sun-dried mango (*amchur*) adds a tangy taste to dishes, while aged pickles develop richer flavors over time. Fermentation encourages the growth of beneficial bacteria that naturally preserve food, enhance digestibility, and improve nutritional value [12]. Granary storage and biopesticides like neem leaves and turmeric protect grains from pests without harmful chemicals, and dairy preservation techniques such as curdling and ghee-making extend milk's shelf life naturally. Traditional food preservation reduces reliance on refrigeration and industrial processing, leading to lower energy consumption and a smaller carbon

footprint. Techniques like sun drying, smoking, and underground storage are sustainable and do not require electricity, making them ideal for rural areas. Most of these methods are eco-friendly, cost-effective, and adaptable, ensuring food security and minimal wastage, especially in rural and agrarian communities.

Traditional methods are natural, cost-effective, and sustainable, making them ideal for preserving food in rural and resource-limited settings (Table 1). However, they require more time and careful storage conditions. Modern methods of food preservation involve use of thermal and non-thermal processing of foods. They offer precision, consistency, and extended shelf life, but they often depend on artificial additives and energy-intensive technologies. Thermal processing involves the application of heat to kill microorganisms, inactivate enzymes, and prevent spoilage [13]. Common thermal techniques include blanching, which briefly heats vegetables or fruits to inactivate enzymes before freezing; pasteurization, which mildly heats liquids like milk (72°C for 15 sec) to kill harmful bacteria while preserving quality; and sterilization, where foods like canned vegetables and UHT milk are treated at high temperatures (above 100°C) to eliminate all microbes. Other advanced methods like milk powder production involve spray-drying milk to achieve moisture levels of 2–4% and water activity below 0.2, making it highly resistant to spoilage. Methods such as dehydration and drying remove moisture to prevent microbial growth, while extrusion cooking processes cereals and snacks under high heat and pressure. Although thermal processing is highly effective, it can degrade heat-sensitive nutrients like Vitamin C and alter food texture, color, and taste. On the other hand, non-thermal processing preserves food without significant heat exposure, thereby maintaining freshness, nutrients, and sensory qualities. High-pressure processing (HPP) uses extremely high pressure (300–800 MPa) to destroy pathogens in foods such as cold-pressed juices [14, 15]. Pulsed Electric Field (PEF) processing applies short bursts of electricity to kill bacteria in liquids like milk and fruit juices [16]. Ultraviolet (UV) irradiation disinfects food surfaces, while ozone treatment extends the shelf life of meat and seafood [17]. Emerging techniques such as cold plasma technology use ionized gases to sterilize food packaging and fresh produce. While non-thermal methods offer significant advantages in preserving nutrients and reducing energy consumption, they often require high initial investment and may not be as effective against certain spores and enzymes.

Table 1. Comparison of Traditional and Modern Food Preservation Methods

Aspect	Traditional Methods	Modern Methods
Benefits		
Natural & Chemical-Free	Uses natural preservatives like salt, oil, sugar, and fermentation, making food safer and healthier.	Often involves artificial preservatives, which may have long-term health risks.
Nutritional Value	Retains essential nutrients and enhances bioavailability (e.g., fermentation increases probiotics).	Some methods, like freezing and vacuum sealing, retain nutrients well, but excessive processing may reduce them.
Eco-Friendly & Sustainable	Requires minimal energy, making it environmentally friendly (e.g., sun drying, smoking, root cellaring).	Uses advanced refrigeration, freezing, and packaging, leading to higher energy consumption and waste production.
Cost-Effective	Low-cost and accessible, especially in rural areas with minimal technology.	Expensive due to advanced machinery, packaging, and storage costs.
Flavour & Aroma	Enhances natural taste through aging, fermentation, and smoking.	Some methods (like canning and artificial preservatives) may alter the natural taste.
Long-Term Storage	Suitable for long-term storage of grains, dairy, and pickles without electricity.	Can extend shelf life for months or years with advanced refrigeration and vacuum sealing.
Disadvantages		
Time-Consuming	Methods like pickling, fermentation, and sun drying take days or weeks.	Faster preservation with techniques like flash freezing and dehydration.
Storage Limitations	Requires specific conditions (e.g., dry climate for sun drying, cool temperatures for root storage).	More versatile, as modern refrigeration allows preservation in any climate.
Control Over Microbial Growth	Relies on natural methods, which may not always prevent bacterial contamination.	More precise microbial control using sterilization, pasteurization, and preservatives.
Inconsistent Quality	Varies based on climate, skill, and storage conditions.	Standardized methods ensure uniform quality and consistency.
Shelf Life	Some methods (like curdling or brining) preserve food for weeks or months but not as long as freezing or canning.	Can preserve food for years using advanced techniques like freeze-drying and irradiation.

Table 2. Health Effects of Traditional vs. Modern Food Preservation Methods

Aspect	Traditional Methods (Sun Drying, Pickling, Fermentation, etc.)	Modern Methods (Freezing, Canning, Chemical Preservatives, etc.)
Nutritional Value	Retains or enhances nutrients through natural preservation (e.g., fermentation increases probiotics and vitamins).	Some methods, like freezing, retain nutrients, but excessive processing (e.g., canning, dehydration) may reduce vitamins.
Chemical Exposure	Uses natural preservatives like salt, sugar, oil, and fermentation, which have minimal side effects when consumed in moderation.	Often involves artificial preservatives (e.g., nitrates, sulfites, BHA, BHT), some of which have been linked to health risks like allergies and cancer.
Digestive Health	Fermented foods (like yogurt, pickles, kanji) promote gut health by providing beneficial probiotics.	Highly processed foods may lack fiber and probiotics, potentially leading to digestive issues.

Salt and Sugar Intake	Some traditional methods (e.g., pickling, <i>murabba</i>) use high salt or sugar, which can increase the risk of hypertension, diabetes, and heart disease.	Processed foods may contain excessive salt, sugar, or unhealthy fats, contributing to obesity and lifestyle diseases.
Additives & Allergens	Rarely contains artificial colors, flavors, or stabilizers, reducing the risk of allergies and food intolerance.	Some modern preservation techniques use additives (like MSG, artificial colors, and emulsifiers) that may trigger allergic reactions.
Microbial Safety	Some methods (like fermentation) introduce beneficial bacteria, but improper handling can lead to contamination.	More controlled sterilization processes ensure microbial safety, but improper packaging can still cause contamination (e.g., botulism in canned foods).
Cancer Risk	Minimal risk if naturally preserved; however, excessive intake of salt-preserved foods may be linked to stomach cancer.	Some preservatives (like nitrates in processed meats) are associated with an increased risk of cancer.

Traditional food preservation methods are generally healthier and more natural, but high salt or sugar intake in pickles and preserved sweets can pose health risks if consumed excessively [19, 20] (Table 2). Modern methods offer better microbial safety and extended shelf life, but artificial preservatives and processing can reduce nutritional value and contribute to long-term health issues [21, 22]. Application of traditional technologies such as fermentation and development of new value-added food products such as fortified foods, powders and soups help restore nutritional status of the growing population facing double burden of malnutrition [23, 24, 25, 26, 27]. A balanced approach, using both traditional and modern techniques wisely, ensures food safety while maintaining health benefits.

VI. CONCLUSION

These traditional Indian preservation techniques, many of which date back thousands of years, reflect the country's deep-rooted knowledge of food safety and storage. By leveraging scientific principles such as water activity control, pH reduction, enzyme inactivation, and microbial inhibition, these methods have ensured food security for generations. Today, modern processing industries continue to draw inspiration from these age-old techniques to develop sustainable and chemical-free preservation methods. As the demand for organic and naturally preserved food grows, these time-tested methods are finding renewed relevance in both rural and urban households.

REFERENCES

- [1] Reddy, N. R. and Pierson, M. D. (1995). Historical Perspectives and Recent Advances in Food Preservation in India. *Journal of Food Processing and Preservation*, 19(1), 1-20.
- [2] Ranganna, S. (1986). *Handbook of Analysis and Quality Control for Fruit and Vegetable Products*. Tata McGraw-Hill.
- [3] Ray, R. C. and Joshi, V. K. (2014). *Fermented Foods: Past, Present and Future Aspects*. CRC Press.
- [4] Tamang, J. P., Watanabe, K., and Holzapfel, W. H. (2016). Review: Diversity of Microorganisms in Global Fermented Foods and Beverages. *Frontiers in Microbiology*, 7, 377.
- [5] Bhat, R., Alias, A. K. and Paliyath, G. (2012). *Progress in Food Preservation*. John Wiley & Sons.
- [6] Thakur, S. and Gupta, R. K. (2006). Traditional storage practices for food grains in India. *Agricultural Reviews*, 27(2), 150-155.
- [7] Achaya, K. T. (1998). *Indian Food: A Historical Companion*. Oxford University Press.
- [8] Ghosh, S. and Rajorhia, G. S. (2014). Traditional Dairy Products of India. *Indian Journal of Dairy Science*, 67(1), 1-10.
- [9] Arora, S K and Patel, A.A. (2017). Effect of Fiber Blends, Total Solids, Heat Treatment, Whey Protein Concentrate and Stage of Sugar Incorporation on Dietary Fiber-Fortified Kheer. *Journal of Food Science and Technology*. 54(11):3512–3520.
- [10] Krishnan, S. (2020). *Sacred Foods of India*. HarperCollins India.
- [11] Mahapatra, R. (2011). *Lord Jagannath: The Microcosm of Indian Spiritual Culture*. Atlantic Publishers.
- [12] Bressa, C., et al. (2018). The effect of fermented foods on gut microbiota and gut health. *Nutrients*, 10(11), 1806.
- [13] Gaze, J. E. (2015). Heat Processing of Food." Campden BRI. *High-Pressure Processing of Food: Principles, Technology, and Applications*. Springer.
- [14] Balasubramaniam, V. M., Barbosa-Cánovas, G. V., & Lelieveld, H. (2016). *High-Pressure Processing of Food: Principles, Technology, and Applications*. Springer.
- [15] Arora, S K and Chauhan, O.P. (2018). High-pressure processing: Principles and engineering aspects. In: *Non-thermal processing of foods*. Ed. O.P. Chauhan, Francis and Taylor. 1-9.
- [16] Arora, S K. 2021. Application of Pulsed Electric Field to Process Milk. *Journal of Food and Agriculture Research*. 1 (2), 192-202.

- [17] Sanganamoni S. and Arora, S. K. (2024). Promoting Self-Employment among Indian Youths by Adopting Recent Innovations in Dairy and Food Industry. Eds. B. Tewari, M. Singh and P. Tiwari. Strategizing the Role of Indian Youth to fulfill the Targets of the Amrit Kaal. National Youth Conference 2024, Jan 12-13 2024. Vivekanand Swadhyay Mandal, GBPUA&T, Pantnagar. Army Printing Press, Lucknow, India. p378-385. ISBN No. 978-81-958697-9-4.
- [18] Strazzullo, P., et al. (2009). Salt intake and risk of hypertension: A meta-analysis. *BMJ*, 339, b4567
- [19] Malik, V. S., et al. (2010). Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes. *Diabetes Care*, 33(11), 2477-2483.
- [20] Cross, A. J. and Sinha, R. (2004). "Meat-related mutagens/carcinogens in the etiology of colorectal cancer. *Environmental and Molecular Mutagenesis*, 44(1), 44-55.
- [21] Rahman, M. S. (2007). Handbook of food preservation. CRC Press.
- [22] Fowles, J., et al. (2001). A review of the toxicological aspects of food preservatives. *Food Additives & Contaminants*, 18(6), 475-493.
- [23] Arora, S. K. 2024. Properties of Sweetened Milk Fortified with Dietary Fibers. *International Journal of Advanced Biochemistry Research*.8(7):86-91.
- [24] Arora, S. K. and Patel, A.A. (2015). Development of Yoghurt "Rich-in" Dietary Fiber and its Physico-chemical Characterization. *International Journal of Basic and Applied Agri. Research*. 13 (2): 148-155.
- [25] Sihag, M. K., Sharma, V., Goyal, A., Arora, S., Singh, A. K., & Lal, D. (2016). Development of an alternative low-cost cereal-based weaning food fortified with iron and vitamin A (retinol acetate). *Indian Journal of Animal Sciences*, 86, 478–484.
- [26] Arora, S. K. (2022). Process Optimization for Whey-Based Tomato Soup. *Acta Scientific Nutritional Health*. 6 (2) 133-139.
- [27] Arora, Simran Kaur and Jha, Y. K. (2005). Whey- The Nectar from Milk. *Beverage and Food World*. 32 (8) p. 43-45.