

Assessment of Soil Fertility Status and Spatial Variability at Farm Level using Geostatistical Tools

Ashok Rathore^{1*}, Dr. K.K. Yadav², Dr. Brijesh Yadav³, Dr. Hari Singh⁴ and Dr. K. D. Ameta⁵

¹Research Scholar, Department of Soil Science and Agricultural Chemistry, Rajasthan College of Agriculture, MPUAT, Udaipur, Rajasthan, 313 001, India

²Professor & Head, Department of Soil Science and Agricultural Chemistry, Rajasthan College of Agriculture, MPUAT, Udaipur (Rajasthan) – 313 001, India

³Regional Centre, ICAR-National Bureau of Soil Survey and Land Use Planning, Udaipur, India

⁴Professor, Department of Agricultural Economics and Management, Rajasthan College of Agriculture, MPUAT, Udaipur, (Rajasthan) – 313 001, India

⁵Professor & Head, Department of Horticulture, Rajasthan College of Agriculture, MPUAT, (Rajasthan) – 313 001, India

*Corresponding author

Received: 30 May 2025; Received in revised form: 28 Jun 2025; Accepted: 05 Jun 2025; Available online: 12 Jul 2025

©2025 The Author(s). Published by Infogain Publication. This is an open-access article under the CC BY license

(<https://creativecommons.org/licenses/by/4.0/>).

Abstract— Soil quality and spatial variability of soil properties are essential considerations for sustainable nutrient management, particularly at the farm level. The present study was conducted from 2023 to 2025 at the Agricultural Research Sub-Station (ARSS), Vallabhnagar, Udaipur, to assess the soil fertility status and map the spatial distribution of soil properties using geospatial techniques. In Kikawas Village 34 sample points—were selected, and soil samples were collected from two depths: 0–15 cm and 15–30 cm. A comprehensive physico-chemical analysis was performed on each sample, including pH, electrical conductivity (EC), organic carbon (OC), available nitrogen (N), phosphorus (P), potassium (K), sulphur (S), calcium (Ca), magnesium (Mg), exchangeable sodium (Na), ESP, cation exchange capacity (CEC), and micronutrients such as iron (Fe), copper (Cu), manganese (Mn), and zinc (Zn). The soils of were alkaline (mean pH 8.16–8.27), with EC variability up to 30%. OC declined from 0.63% to 0.51% between depths, and available macronutrients were lower in the subsoil. Micronutrients, particularly Fe and Mn, showed high spatial variability and limited availability across 40–50% of the farm area.

Keywords— Spatial variability, Geostatistics, Global positioning system, Geographic information system, Site-specific nutrient management

I. INTRODUCTION

Soil is one of the most vital natural resources that support life on Earth. It plays a crucial role in agricultural productivity by providing nutrients and a medium for plant growth. Composed of mineral matter, organic matter, water, and air, soil exhibits complex physical and chemical properties that directly influence its fertility. Key parameters such as soil texture, pH, electrical conductivity (EC), organic carbon (OC), available nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulphur (S), and micronutrients like zinc (Zn), copper (Cu), iron (Fe), and

manganese (Mn) are essential for crop growth and soil health. Declining soil fertility is a major concern in Indian agriculture (Gruhn *et al.*, 2000). Fertility is not only determined by the presence of nutrients but also by the soil's ability to retain and supply them in available forms. Human-induced factors, including continuous cropping and unbalanced fertilizer use, often lead to spatial variability in nutrient distribution (Deshmukh, 2012a). Regular monitoring of soil fertility is therefore necessary to sustain agricultural production and manage nutrient imbalances effectively. Assessment of soil fertility status and mapping of its spatial distribution are vital

for precise and site-specific management. Fertility mapping enables targeted interventions and reduces input costs while improving crop productivity. Geospatial technologies such as Remote Sensing (RS), Geographic Information Systems (GIS), and Global Positioning System (GPS) have become powerful tools for studying spatial variability in soils (Das, 2004). These technologies allow accurate recording of sampling locations, generation of thematic maps, and identification of nutrient-deficient areas. Singh *et al.* (2017) emphasized that GIS-based soil fertility maps help optimize fertilizer application and support long-term soil health management. Electrical conductivity is a useful indicator of soluble salt concentration in soil and may vary with depth and topography (Deshmukh *et al.*, 2012b; Dutta and Ram, 1993). Soil pH influences nutrient solubility and microbial activity (Rai *et al.*, 2011), while organic carbon is critical for improving soil structure and nutrient retention (Kekane *et al.*, 2015). Cation Exchange Capacity (CEC) reflects the soil's ability to hold essential cations such as Ca^{2+} , Mg^{2+} , and K^{+} , which are vital for plant nutrition (Elfaki *et al.*, 2015). Techniques such as soil mapping, remote sensing, and geostatistical methods are employed to characterize and manage soil variability effectively (Cambardella *et al.*, 1994).

II. MATERIALS AND METHODS

Study Area

The present investigation was carried out at the Agricultural Research Sub-Station (ARSS), Vallabhnagar, situated in the Udaipur district of Rajasthan. ARSS, Vallabhnagar is the largest research farm under the Maharana Pratap University of Agriculture and Technology (MPUAT), Udaipur, comprising Kikawa's farm covers 19.73 hectares. Geographically, Kikawa's farm is positioned at $24^{\circ}05'$ N latitude and $74^{\circ}04'$ E longitude. The study region falls under the Sub-Humid Southern Plain and Aravalli Hills Agro-Climatic Zone (Zone IV-A) of Rajasthan.

Soil Sampling and Processing

To assess the spatial variability of soil fertility, the entire research area was systematically divided into uniform grids of $75\text{ m} \times 75\text{ m}$ using Google Earth Pro. This grid-based sampling framework ensured comprehensive spatial coverage and high-resolution representation of field-level variability. Within each grid, two to three composite soil samples were randomly collected to capture intra-grid variability. A stratified random sampling technique was adopted to ensure proportionate representation of different field blocks across the station. Soil samples were collected from two standard depths: 0–15 cm (surface) and 15–30 cm (subsurface) and the samples were labelled with unique identification codes. The collected samples were

transported to the laboratory in sterile polythene bags. Upon arrival, they were air-dried under shade to preserve the physico-chemical integrity of the soil. The dried samples were gently crushed using a pestle and mortar to break down clods without disturbing the mineral composition. The soil was then sieved through a 2 mm mesh to achieve uniform particle size, suitable for standard laboratory analysis.

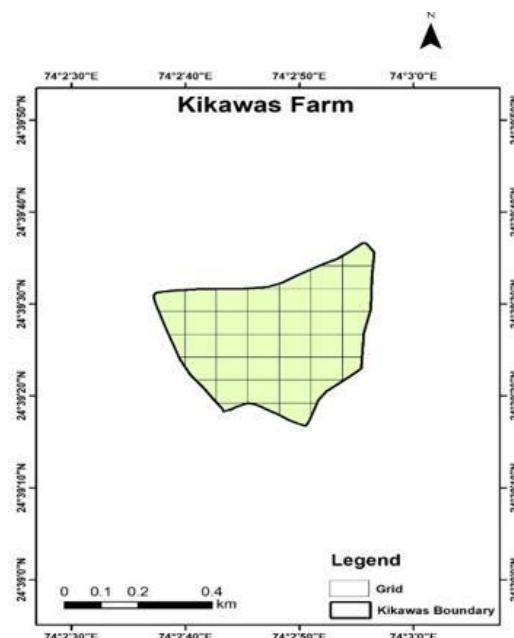


Fig. 1 Boundary and Grid map of sampling site

Laboratory Analysis

Laboratory analyses included soil pH, EC, OC, macronutrients (N, P, K, S, Ca, Mg), micronutrients (Fe, Zn, Cu, Mn), exchangeable sodium, ESP, and CEC. Standard analytical procedures were followed: pH and EC (Jackson, 1973), OC (Walkley and Black, 1934), available N (Subbiah and Asija, 1956), available P (Olsen *et al.*, 1954), available K (Jackson, 1973), available S (Williams and Steinbergs, 1959), micronutrients via DTPA extraction (Lindsay and Norvell, 1978), exchangeable Ca and Mg (Tucker and Kurtz, 1961), exchangeable Na (Bower *et al.*, 1952), ESP (Richards, 1954), and CEC (Richards, 1968).

Descriptive statistical analysis

Descriptive statistical analysis was conducted to summarize the variability and distribution of soil fertility parameters. For each soil property, statistical indicators such as minimum, maximum, mean, median, standard deviation, coefficient of variation (CV), skewness, and kurtosis were calculated separately for both soil depths (0–15 cm and 15–30 cm). These computations were carried out using Microsoft Excel.

III. RESULT AND DISCUSSION

Descriptive Statistical Analysis

The descriptive statistics of Kikawas farm soil properties are given in Tables 1 to 5. The soil pH ranged from 7.72 to 8.48 (mean 8.07) in surface (0–15 cm) and 7.822 to 8.709 (mean 8.263) in sub-surface (15–30 cm), indicating slightly alkaline conditions with low variability (CV < 3%) and platykurtic distribution, suggesting uniform soil reaction across samples (Rai et al., 2011; Rathore et al., 2023). Electrical conductivity showed moderate variability (CV 26–28%), with a slight increase in mean values from 1.48 to 1.637 dS/m, along with strong positive skewness at depth, indicating localized salt accumulation (Kumar et al. (2021). Organic carbon content decreased from 0.62% to 0.499% with depth and showed moderate variability (CV ~20%), reflecting reduced organic inputs in deeper layers (Gautam et al., 2023). Macronutrients like nitrogen (316.08 to 271.50 kg/ha), phosphorus (20.48 to 17.44 kg/ha), and potassium (356.89 to 340.88 kg/ha) declined with depth, showing low to moderate variability (CV ~10–25%), influenced by leaching and crop uptake (Kothyari et al., 2018; Meena et al., 2020). Secondary nutrients—sulphur, calcium, and magnesium—also decreased with depth and showed moderate heterogeneity, indicating the effect of parent material and fertilization history (Anand et al., 2025). Micronutrients like Fe, Cu, Mn, and Zn exhibited high to moderate variability (CV 30–40%) with lower values in subsoil, attributed to declining organic matter and microbial activity (Moharana et al., 2020; Vasundhara et al., 2024). Exchangeable sodium and ESP increased slightly with depth, while CEC remained stable (~22 cmol(+)/kg), suggesting uniform clay and organic matter distribution (Owliae et al., 2025).

IV. CONCLUSION

Based on the comprehensive analysis of soil samples collected from Kikawas at both surface (0–15 cm) and subsurface (15–30 cm) depths, it can be concluded that the soils of exhibited slightly alkaline reactions, with low variability in pH across depths. Electrical conductivity (EC) and organic carbon (OC) exhibited moderate variability, likely due to differences in land use, organic inputs, and irrigation patterns. Micronutrients such as iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) showed high spatial variability, indicating inconsistent nutrient dynamics and possible localized deficiencies. Major nutrients including available nitrogen (N), phosphorus (P), and potassium (K) were found to decrease with depth, highlighting the influence of root distribution, organic matter content, and nutrient cycling processes. Overall, the study highlights considerable spatial variability in key

fertility parameters, suggesting the need for site-specific nutrient management strategies. The information generated from this assessment serves as a scientific basis for informed fertilizer recommendations, improved input use efficiency, and sustainable soil fertility management at the farm level. Understanding and addressing such variability is essential for enhancing crop productivity and ensuring long-term soil health.

REFERENCES

- [1] Anand, S., Ravikumar, D., Gurumurthy, K.T., Thippeshappa, G.N., C.J., S. and Shoba, S. 2025. Assessment and mapping of soil fertility status in Byrapura micro-watershed of Nandi sub-watershed using geospatial techniques. *International Journal of Advanced Biochemistry Research*, 9(4): 653–665.
- [2] Bower, C.A., Reitemeier, R.F. and Fireman, M. 1952. Exchangeable cation analysis of saline and alkali soils. *Soil Science*, 73: 251–261.
- [3] Cambardella, C.A., Moorman, T.B., Novak, J.M., Parkin, T.B., Karlen, D.L., Turco, R.F. and Konopka, A.E. 1994. Field-scale variability of soil properties in central Iowa soils. *Soil Science Society of America Journal*, 58(5): 1501–1511.
- [4] Das, D.K. 2004. Role of geoinformatics in sustainable agriculture: research, extension and service to the farmers. Chairman's address. In *Proceedings of the Symposium Geoinformatics Applications for Sustainable Development*, pp. 1–11.
- [5] Datta, M. and Ram, M. 1993. Status of micronutrients in some soil series of Tripura. *Journal of the Indian Society of Soil Science*, 41(4): 776–777.
- [6] Deshmukh, K.K. 2012a. Evaluation of soil fertility status from Sangamner area, Ahmednagar district, Maharashtra, India. *Rasayan Journal of Chemistry*, 5(3): 398–406.
- [7] Deshmukh, K.K. 2012b. Studies on chemical characteristics and classification of soils from Sangamner area, Ahmednagar district, Maharashtra, India. *Rasayan Journal of Chemistry*, 5(1): 74–88.
- [8] Elfaki, J., Gafer, M., Sulieman, M. and Ali, M. 2015. Comparison and evaluation of two analytical methods for cation exchange capacity and exchangeable sodium percentage of five soil types in Central Sudan. *Open Journal of Soil Science*, 5(12): 311–318.
- [9] Gautam, M.K., Sharma, S., Kumar, A., Kumar, S., Jayant, H., Sachan, R. and Kumar, M. 2023. Assessment of soil fertility status under the barren land soil of the central plain zone of Uttar Pradesh, India. *International Journal of Environment and Climate Change*, 13(10): 483–490.
- [10] Gruhn, P., Goletti, F. and Yudelman, M. 2000. Integrated nutrient management, soil fertility and sustainable agriculture: current issues and future challenges. *International Food Policy Research Institute*, 32: 1–26.
- [11] Jackson, M.L. 1973. *Soil Chemical Analysis*. Prentice Hall of India Pvt. Ltd., New Delhi, pp. 263–393.
- [12] Kekane, S.S., Chavan, R.P., Shinde, D.N., Patil, C.L. and Sagar, S.S. 2015. A review on physico-chemical properties of soil. *International Journal of Chemical Studies*, 3(4): 29–32.

[13] Kothyari, H.S., Meena, K.C., Meena, B.L. and Meena, R. 2018. Soil fertility status in Sawai Madhopur district of Rajasthan. *International Journal of Pure and Applied Bioscience*, 6(4): 587–591.

[14] Kumar, M., Kar, A., Raina, P., Singh, S.K., Moharana, P.C. and Chauhan, J.S. 2021. Assessment and mapping of available soil nutrients using GIS for nutrient management in hot arid regions of North-Western India. *Journal of the Indian Society of Soil Science*, 69(2): 119–132.

[15] Lindsay, W.L. and Norvell, W.A. 1978. Development of DTPA soil test for zinc, iron, manganese and copper. *Soil Science Society of America Journal*, 42: 421–428.

[16] Meena, R., Gurjar, P.C., Meena, R.K., Meena, K.C., Singh, B. and Kothyari, H.S. 2020. Evaluation of physico-chemical properties of soil in Karauli district of Rajasthan. *Journal of Pharmacognosy and Phytochemistry*, 9(2): 392–396.

[17] Moharana, P.C., Jena, R.K., Pradhan, U.K., Nogya, M., Tailor, B.L., Singh, R.S. and Singh, S.K. 2020. Geostatistical and fuzzy clustering approach for delineation of site-specific management zones and yield-limiting factors in irrigated hot arid environment of India. *Precision Agriculture*, 21: 426–448.

[18] Olsen, S.R., Cole, C.V., Frank, S.W. and Dean, L.A. 1954. Estimation of available phosphorus by extraction with sodium bicarbonate. *United States Department of Agriculture Circular*, 939.

[19] Owliaie, H.R., Salehi, A.R. and Zareian, G.R. 2025. Assessment of geostatistical approach to spatial distribution of soil fertility characteristics of the southwest of Shiraz in different land uses. *JWSS – Isfahan University of Technology*, 28(4): 75–94.

[20] Rai, S., Chopra, A.K., Pathak, C., Sharma, D.K., Sharma, R. and Gupta, P.M. 2011. Comparative study of some physicochemical parameters of soil irrigated with sewage water and canal water of Dehradun city, India. *Archives of Applied Science Research*, 3(2): 318–325.

[21] Rathore, A.S., Sharma, Y.M., Tagore, G.S., Nagwanshi, A. and Jayaraman, S. 2023. Soil fertility mapping using GPS and GIS in Jhabua district, Madhya Pradesh, India. *Journal of the Indian Society of Soil Science*, 71(3): 276–286.

[22] Richards, L.A. (Ed.). 1968. Diagnosis and improvement of saline and alkaline soils. *USDA Handbook No. 60*, Washington, D.C., USA.

[23] Richards, L.A. 1954. Diagnosis and improvement of saline-alkali soils. *Agriculture Handbook No. 60*, USDA, Washington.

[24] Singh, A.K. and Thakur, R. 2017. A scenario-based land and irrigation capability assessment for crop intensification: a case study of Jharkhand, eastern India. *Journal of the Indian Society of Soil Science*, 65(2): 161–170.

[25] Subbiah, B.V. and Asija, G.L. 1956. A rapid procedure for the estimation of available nitrogen in soil. *Current Science*, 25: 259–260.

[26] Tucker, B.B. and Kurtz, L.T. 1961. Calcium and magnesium determinations by EDTA titrations. *Soil Science Society of America Journal*, 25(1): 27–29.

[27] Vasundhara, R., Dharumaran, S., Kalaiselvi, B., Srinivasan, R., Hegde, R., Lalitha, M. and Ramamurthy, V. 2024. Assessment of spatial variability of soil fertility parameters in Eastern Ghats of Karnataka: a case study. *Remote Sensing of Soils*, 7: 99–109.

[28] Walkley, A. and Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. *Soil Science*, 37: 29–38.

[29] Williams, C.H. and Steenberg's, A. 1959. Soil sulphur fractions as chemical indices of available sulphur in some Australian soils. *Australian Journal of Agricultural Research*, 10(3): 340–352.

Table 1: Descriptive Statistics of soil pH, electrical conductivity and organic carbon content of Kikawas farm

Parameter	pH		EC (dS/m)		OC (%)	
Depth	0-15 cm	15-30 cm	0-15 cm	15-30 cm	0-15 cm	15-30 cm
Minimum	7.82	7.89	0.42	0.64	0.36	0.3
Maximum	8.69	8.79	2.16	2.37	0.83	0.72
Mean	8.16	8.27	1.51	1.5	0.63	0.51
Sd	0.22	0.21	0.46	0.46	0.1	0.09
Cv %	2.64	2.53	30.29	30.4	16.02	17.22
Skewness	0.44	0.44	-0.34	0.18	-0.43	0.01
Kurtosis	-0.16	-0.14	-0.44	-0.84	0.67	0.77

Table 2: Descriptive Statistics of available nitrogen, phosphorus and potassium in Kikawas farm

Parameter	N (kg/ha)		P (kg/ha)		K (kg/ha)	
Depth	0-15 cm	15-30 cm	0-15 cm	15-30 cm	0-15 cm	15-30 cm
Minimum	234.69	186.17	13.21	10.09	274.73	267.37

Maximum	378.59	327.59	30.47	22.47	429.48	414.11
Mean	325.34	274.7	20.67	15.2	348.7	326.4
Sd	33.42	33.97	4.15	3.05	37.21	34.59
Cv %	10.27	12.37	20.08	20.09	10.67	10.6
Skewness	-0.66	-0.46	0.37	0.53	0.17	0.56
Kurtosis	0.37	-0.22	0.01	0.03	-0.21	0.34

Table 3: Descriptive Statistics of available sulphur, exchangeable Ca and Mg in Kikawas farm

Parameter	S (mg kg ⁻¹)		Ca (Meq/L)		Mg (Meq/L)	
Depth	0-15 cm		15-30 cm		0-15 cm	
Minimum	8.8		7.88		133.15	
Maximum	23.59		20.69		201.4	
Mean	16.72		14.91		167.2	
Sd	3.28		2.97		18.81	
Cv %	19.64		19.92		11.25	
Skewness	-0.16		-0.18		0.04	
Kurtosis	-0.03		-0.15		-0.74	

Table 4: Descriptive Statistics of available Fe, Cu, Mn and Zn in soils of Kikawas farm

Parameter	Fe (mg kg ⁻¹)		Cu (mg kg ⁻¹)		Mn (mg kg ⁻¹)		Zn (mg kg ⁻¹)	
Depth	0-15 cm		15-30 cm		0-15 cm		15-30 cm	
Minimum	1.13		1.03		0.03		0.9	
Maximum	5.78		5.01		0.36		0.32	
Mean	3.18		2.87		0.17		0.15	
Sd	1.23		0.95		0.09		0.06	
Cv %	38.76		33.13		51.88		43.64	
Skewness	0.68		0.61		0.65		0.53	
Kurtosis	0.16		0.53		0.28		0.72	

Table 5: Descriptive Statistics of Exchangeable Na, ESP, and CEC in soils of Kikawas farm

Parameter	Exch. Na (cmol/kg)		ESP (%)		CEC (cmol(+)/kg)	
Depth	0-15 cm		15-30 cm		0-15 cm	
Minimum	1.42		1.44		7.49	
Maximum	3.16		3.3		14.89	
Mean	2.48		2.48		11.36	
Sd	0.45		0.45		1.42	
Cv %	18.12		18.01		12.47	
Skewness	-0.58		-0.44		-0.15	
Kurtosis	-0.1		-0.12		1.01	