



# Corm and Cormlets characterization of Novel Hybrids of *Gladiolus (Gladiolus hybrida)* in off-Season

Pratee Pinta<sup>1</sup>, Dr. L. N. Mahawer<sup>2\*</sup>, Dr. H. L. Bairwa<sup>2</sup>, Dr. S. Ramesh Babu<sup>3</sup>, Dr. Latika Sharma<sup>4</sup>, Sunita Yadav<sup>1</sup>

<sup>1</sup> M.Sc (Hort.) FLS, Department of Horticulture, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur-313001, Rajasthan, India

<sup>2</sup> Professor, Department of Horticulture, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur-313001, Rajasthan, India

<sup>3</sup> Professor, Department of Entomology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur-313001, Rajasthan, India

<sup>4</sup> Professor, Department of Agriculture Economics, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur-313001, Rajasthan, India.

\*Corresponding author

Received: 02 Jun 2025; Received in revised form: 01 Jul 2025; Accepted: 06 Jun 2025; Available online: 13 Jul 2025

©2025 The Author(s). Published by Infogain Publication. This is an open-access article under the CC BY license

(<https://creativecommons.org/licenses/by/4.0/>).

**Abstract**— The present study was conducted during 2024-25 at the Horticulture Farm, Rajasthan College of Agriculture, MPUAT, Udaipur, to evaluate the performance of nine novel gladiolus hybrids under off-season conditions. The study aimed to assess their corm production traits to identify superior genotypes suitable for off-season cultivation. Significant variation was observed among the hybrids for all studied parameters. Hybrid H<sub>5</sub> ♀ GS-2 × ♂ Arka Amar recorded highest corm diameter (3.94 cm), corm weight (23.60 g), final corm weight (23.60g) While H<sub>6</sub> ♀ Gunjan × ♂ Dhanvantari recorded highest corm / plant (1.87) and cormlets / plant (5.93). Furthermore, hybrids H<sub>5</sub> ♀ GS-2 × ♂ Arka Amar and H<sub>8</sub> ♀ GS-2 × ♂ Pricella demonstrated promising results for corm diameter and weight indicating potential for commercial multiplication.

**Keywords**— *Gladiolus, corms, hybrids, traits, cormlets.*



## I. INTRODUCTION

Gladiolus (*Gladiolus hybrida*) commonly known as sword lily belongs to Iridaceae family. It is indigenous to South Africa and the area around the Jambisi River in the Cape. It is a fragile perennial herbaceous plant which is grown from seeds and corms for commercial use. Most South African species have a basic chromosomal number ( $X = 15$ ) and are diploid ( $2n = 30$ ). Gladiolus is a very appealing plant because of its enormous, colorful florets, bright hues, and long-lasting spikes. It is a popular option for herbaceous borders, beds, rock gardens, pots, and as a cut flower due to its produces lovely the inflorescence in a variety of hues. After roses, carnations, and chrysanthemums, gladiolus comes in at the fourth position in the global cut flower trade (Ahmad *et al.*, 2008). The United States, Netherlands, Italy,

France, Poland, Bulgaria, Brazil, Australia, and Israel are among the major gladiolus-producing countries.

## II. MATERIAL METHOD

At the Shed Net House Horticulture Farm, Rajasthan College of Agriculture, MPUAT, Udaipur, Rajasthan, a field experiment was conducted. The experiment was carried out in 0.58 x 0.39 m<sup>2</sup> plastic crates with six corms / plastic crate. The experimental design was laid completely randomized design (CRD) with 9 treatments and 3 replications. The experimental unit situated at 24° 57' N latitude and 73° 70' E longitudes at an elevation of 573.8 meters above mean sea level. The region falls under agro-climatic Zone IV A (Sub-humid Southern Plain and Aravali

Hills) of Rajasthan. The temperature ranges from 22.7°C to 34.7°C and relative humidity was maintained between 60 to 90 (per cent). To conduct this experiment On August 13, 2024, the uniformly sized corms of the 9 novel hybrids were chosen and immersed in a solution of GA<sub>3</sub>@200 ppm for a whole day, to break the corms dormancy and kept in shade for 2 hours. The nine novel hybrids treated 6corm of gladiolus were planted in media Soil: Sand: Vermicompost (2:1:1v/v) at a depth of 3-5cm in plastic crates on 14 Aug 2024 in shed net house. Further, the observation was recorded from five randomly selected corms of each replication to assess the Corm and cormlets traits: Corms / plant, Corm diameter (cm), Polar diameter (cm), Cormlets / plant, Cormlets diameter (cm), Initial weight of corm (g), Final corm weight (g), Propagation coefficient (%).

#### Treatment details

| S. No | Treatments           | Treatment details                |
|-------|----------------------|----------------------------------|
| 1.    | <b>H<sub>1</sub></b> | ♀ Punjab Beauty × ♂ Friendship   |
| 2.    | <b>H<sub>2</sub></b> | ♀ Pusa Shubham × ♂ Arka Pratham  |
| 3.    | <b>H<sub>3</sub></b> | ♀ Punjab Beauty × ♂ Praha        |
| 4.    | <b>H<sub>4</sub></b> | ♀ Gunjan × ♂ Arka Pratham        |
| 5.    | <b>H<sub>5</sub></b> | ♀ GS-2 × ♂ Arka Amar             |
| 6.    | <b>H<sub>6</sub></b> | ♀ Gunjan × ♂ Dhanvantari         |
| 7.    | <b>H<sub>7</sub></b> | ♀ Punjab Beauty × ♂ Punjab Glad2 |
| 8.    | <b>H<sub>8</sub></b> | ♀ GS-2 × ♂ Pricella              |
| 9.    | <b>H<sub>9</sub></b> | ♀ Mohini × ♂ GS-2                |

#### 2.1 Statistical Analysis

The data statistically analyzed by using Completely Randomized Design (CRD) with three replications. The level of significance was noticed at P = 0.05% to determine the significant difference ((Cochran and Cox, 1950).

### III. RESULTS AND DISCUSSION

#### Corms and Cormlets traits

##### 3.1 Corms per plant

The observations recorded Corms per plant as presented in Table 3.1. The maximum number of corms plant<sup>-1</sup> was observed at hybrid H<sub>6</sub> -♀ Gunjan × ♂ Dhanvantari (1.87) followed by H<sub>4</sub> -♀ Gunjan × ♂ Arka Pratham (1.47) and H<sub>1</sub> -♀ Punjab Beauty × ♂ Friendship while the minimum corm/plant was recorded at H<sub>7</sub> -♀ Punjab Beauty × ♂ Punjab Glad2 (1.13) respectively. However, the corm per

plant among the hybrids H<sub>1</sub> -♀ Punjab Beauty × ♂ Friendship, H<sub>4</sub> -♀ Gunjan × ♂ Arka Pratham were statistically at par with H<sub>3</sub> -♀ Punjab Beauty × ♂ Praha and H<sub>4</sub> -♀ Gunjan × ♂ Arka Pratham. Similar results were shown by Swaroop (2010) in American beauty (3.33), Poon et al. (2010) and Kumar et al. (2011) where number of corms, with greater weight and size were observed. These values reflect efficient energy partitioning and robust below-ground development, essential for sustainable cultivar production.

##### 3.2 Corm diameter (cm)

The observations recorded Corm diameter (cm) as presented in Table 3.1. The highest corm diameter was recorded at hybrid H<sub>5</sub> -♀ GS-2 × ♂ Arka Amar (3.94 cm) followed by H<sub>3</sub> -♀ Punjab Beauty × ♂ Praha (3.76 cm) and H<sub>8</sub> -♀ GS-2 × ♂ Pricella (3.73 cm) respectively. The lowest corm diameter was observed at hybrid H<sub>2</sub> -♀ Pusa Shubham × ♂ Arka Pratham (2.70 cm). Similar results were observed by Kujur et al. (2016) for corm diameter (6.68 cm) was recorded in cv. Candyman and size. The accumulation of photosynthesis in this hybrid indicates effective assimilate mobilization from leaves as source and sink as stems into underground modified stem.

##### 3.3 Polar diameter (cm)

The observations recorded Polar diameter (cm) as presented in Table 3.1. The largest polar diameter was recorded at hybrid H<sub>3</sub> -♀ Punjab Beauty × ♂ Praha (2.67 cm) followed by H<sub>5</sub> -♀ GS-2 × ♂ Arka Amar (2.55 cm) and H<sub>6</sub> -♀ Gunjan × ♂ Dhanvantari (2.34cm) respectively. The smallest polar diameter was observed at hybrid H<sub>1</sub> -♀ Punjab Beauty × ♂ Friendship (1.92 cm). According to Azimi et al. (2020), Kirtimala et al. (2011) observed the maximum corm diameter in Genotype Melody.

##### 3.4 Cormlets / plant

The observations recorded Cormlets per plant as presented in Table 3.1. The hybrid H<sub>6</sub> -♀ Gunjan × ♂ Dhanvantari recorded the maximum number of cormlets plants<sup>-1</sup> (5.93) followed by H<sub>9</sub> -♀ Mohini × ♂ GS-2 (5.27), H<sub>7</sub> -♀ Punjab Beauty × ♂ Punjab Glad-2 (5.13), H<sub>8</sub> -♀ GS-2 × ♂ Pricella (5.13) while the minimum cormlets were recorded at H<sub>5</sub> -♀ GS-2 × ♂ Arka Amar (3.80). However, hybrid H<sub>7</sub> -♀ Punjab Beauty × ♂ Punjab Glad-2 (5.13), H<sub>8</sub> -♀ GS-2 × ♂ Pricella (5.13) were statistically at par with H<sub>9</sub> -♀ Mohini × ♂ GS-2 (5.27) for cormlets produced plants<sup>-1</sup>. According to Priyanka et al. (2023), Nalage et al. (2019) observed the maximum no. of cormlets per plants (138.87) were noticed in variety Phule Tejas.'Phule Prerana'.

##### 3.5 Cormlets diameter

The observations recorded Cormlets diameter as presented in Table 3.2 and Fig.3.1. Cormlets diameter was highest at

gladiolus hybrid H<sub>3</sub>-♀ Punjab Beauty × ♂ Praha (1.55 cm) followed by H<sub>6</sub>-♀ Gunjan × ♂ Dhanvantari (1.34cm), H<sub>1</sub>-♀ Punjab Beauty × ♂ Friendship (1.20cm), while the lowest cormlets diameter was recorded at H<sub>9</sub>-♀ Mohini × ♂ GS-2 (0.81cm), respectively. Similar results observed by Dhakal et al. (2021) for cormlets diameter.

### 3.6 Initial corm weight (g)

The observations recorded Initial weight of corm per plant as presented in Table 3.2. and Fig.3.1. The highest initial weight of corm plant<sup>-1</sup> was recorded at hybrids H<sub>5</sub>-♀ GS-2 × ♂ Arka Amar (19.07 g) followed by H<sub>8</sub>-♀ GS-2 × ♂ Pricella (18.07 g), H<sub>4</sub>-♀ Gunjan × ♂ Arka Pratham (17.00g). However, the minimum initial weight corm plant<sup>-1</sup> was recorded at H<sub>2</sub>-♀ Pusa Shubham × ♂ Arka Pratham (13.47 g). According to Hossain et al. (2012) observed highest weight of corms and size.

### 3.7 Final corm weight (g)

The observations recorded Final corm weight as presented in Table 3.2. and Fig 3.1. The hybrid H<sub>5</sub>-♀ GS-2 × ♂ Arka Amar recorded the highest corm weight (23.60 g) followed by H<sub>8</sub>-♀ GS-2 × ♂ Pricella (22.93g), H<sub>4</sub>-♀ Gunjan × ♂ Arka Pratham (20.80g) while the lowest final corm weight was observed at H<sub>2</sub>-♀ Pusa Shubham × ♂ Arka Pratham (17.80 g) respectively. However, significant final corm weight among the hybrids H<sub>4</sub>-♀ Gunjan × ♂ Arka Pratham (20.80g), H<sub>7</sub>-♀ Punjab Beauty × ♂ Punjab Glad-2 (20.47g), H<sub>9</sub>-♀ Mohini × ♂ GS-(20.27g) were statistically at par with hybrid H<sub>5</sub>-♀ GS-2 × ♂ Arka Amar, respectively. The accumulation of photosynthesis in this hybrid indicates effective assimilate mobilization from leaves as source and sink as stems into underground modified stem. Sankari et al. (2012) observed highest weight of corms and size. This might be due to reason that no. of leaves was highest which resulted in the production of more photosynthates in the plant with transfer towards the roots.

### 3.8 Propagation coefficient (%)

The observations recorded Propagation coefficient as presented in Table 3.2. and Fig 3.1. The highest propagation coefficient was observed at hybrid H<sub>3</sub>-♀ Punjab Beauty × ♂ Praha (42.64%) followed H<sub>9</sub>-♀ Mohini × ♂ GS-2 (38.40%), H<sub>2</sub>-♀ Pusa Shubham × ♂ Arka Pratham (32.87%), H<sub>7</sub>-♀ Punjab Beauty × ♂ Punjab Glad-2 (32.85%), respectively. However, lowest propagation coefficient was recorded at H<sub>4</sub>-♀ Gunjan × ♂ Arka Pratham (22.54%)., Patel et al. (2022) emphasized that genotypic makeup plays a vital role in determining propagation traits and overall reproductive efficiency in gladiolus. Suggesting high reproductive efficiency and adaptability. These features are vital for breeders focusing on fast propagation and commercial scaling.

## IV. CONCLUSION

It was concluded that the gladiolus hybrid H<sub>5</sub>-♀ GS-2 × ♂ Arka Amar had the highest corm diameter (3.94cm), corm weight (23.60gm). The corm per plant (1.87), cormlets/ plant (5.93) recorded at hybrid H<sub>6</sub>-♀ Gunjan × ♂ Dhanvantari while the lowest corm/plant (1.20) and minimum corm weight (17.80g) were observed in hybrid H<sub>2</sub>-♀ Pusa Shubham × ♂ Arka Pratham, respectively. Hybrid H<sub>3</sub> ♀ Punjab Beauty × ♂ Praha observed highest cormlets diameter (1.55 cm) and polar diameter (2.67 cm) while the highest propagation coefficient was observed at hybrid H<sub>3</sub>-♀ Punjab Beauty × ♂ Praha (42.64%), respectively. Under off-season protected culture, the discovered elite hybrids H<sub>5</sub>, H<sub>6</sub>, H<sub>3</sub> exhibited superior adaptability for corm production potential. These hybrids offer valuable genetic resources for enhancing gladiolus year-round availability, propagation efficiency and future breeding programs.

Table. 3.1. Novel hybrids of *Gladiolus hybrida* influence on corms and cormlets traits under shed net house in off-season.

| Hybrids                                           | Corms per plant | Corms diameter (cm) | Polar diameter (cm) | Cormlets per plant |
|---------------------------------------------------|-----------------|---------------------|---------------------|--------------------|
| H <sub>1</sub> -♀ Punjab Beauty × ♂ Friendship    | 1.40            | 3.35                | 1.92                | 4.27               |
| H <sub>2</sub> -♀ Pusa Shubham × ♂ Arka Pratham   | 1.20            | 2.70                | 2.12                | 4.07               |
| H <sub>3</sub> -♀ Punjab Beauty × ♂ Praha         | 1.33            | 3.76                | 2.67                | 4.80               |
| H <sub>4</sub> -♀ Gunjan × ♂ Arka Pratham         | 1.47            | 3.43                | 2.16                | 4.33               |
| H <sub>5</sub> -♀ GS-2 × ♂ Arka Amar              | 1.40            | 3.94                | 2.55                | 3.80               |
| H <sub>6</sub> -♀ Gunjan × ♂ Dhanvantari          | 1.87            | 3.61                | 2.34                | 5.93               |
| H <sub>7</sub> -♀ Punjab Beauty × ♂ Punjab Glad-2 | 1.13            | 3.52                | 2.21                | 5.13               |
| H <sub>8</sub> -♀ GS-2 × ♂ Pricella               | 1.20            | 3.73                | 2.12                | 5.13               |
| H <sub>9</sub> -♀ Mohini × ♂ GS-2                 | 1.33            | 3.53                | 2.15                | 5.27               |

|               |      |      |      |      |
|---------------|------|------|------|------|
| SEM ( $\pm$ ) | 0.04 | 0.09 | 0.06 | 0.13 |
| CD (P=0.05)   | 0.11 | 0.28 | 0.18 | 0.38 |
| CV (%)        | 4.66 | 4.62 | 4.63 | 4.61 |

Table. 3.2. Novel hybrids of *Gladiolus hybrida* influence on corms and cormlets traits under shed net house in off-season.

| Hybrids                                            | Cormlets diameter (cm) | Final corm weight(g) | Initial corm weight (g) | Propagation coefficient (%) |
|----------------------------------------------------|------------------------|----------------------|-------------------------|-----------------------------|
| H <sub>1</sub> - ♀ Punjab Beauty × ♂ Friendship    | 1.20                   | 18.47                | 14.67                   | 25.94                       |
| H <sub>2</sub> - ♀ Pusa Shubham × ♂ Arka Pratham   | 0.97                   | 17.80                | 13.47                   | 32.87                       |
| H <sub>3</sub> - ♀ Punjab Beauty × ♂ Praha         | 1.55                   | 19.87                | 13.93                   | 42.64                       |
| H <sub>4</sub> - ♀ Gunjan × ♂ Arka Pratham         | 0.97                   | 20.80                | 17.00                   | 22.54                       |
| H <sub>5</sub> - ♀ GS-2 × ♂ Arka Amar              | 1.07                   | 23.60                | 19.07                   | 24.33                       |
| H <sub>6</sub> - ♀ Gunjan × ♂ Dhanvantari          | 1.34                   | 19.20                | 15.13                   | 26.92                       |
| H <sub>7</sub> - ♀ Punjab Beauty × ♂ Punjab Glad-2 | 1.13                   | 20.47                | 15.40                   | 32.85                       |
| H <sub>8</sub> - ♀ GS-2 × ♂ Pricella               | 0.95                   | 22.93                | 18.07                   | 26.83                       |
| H <sub>9</sub> - ♀ Mohini × ♂ GS-2                 | 0.81                   | 20.27                | 14.67                   | 38.40                       |
| SEM ( $\pm$ )                                      | 0.05                   | 0.89                 | 0.53                    | 0.55                        |
| CD (P=0.05)                                        | 0.15                   | 2.66                 | 1.58                    | 1.64                        |
| CV (%)                                             | 7.69                   | 7.56                 | 5.83                    | 3.15                        |

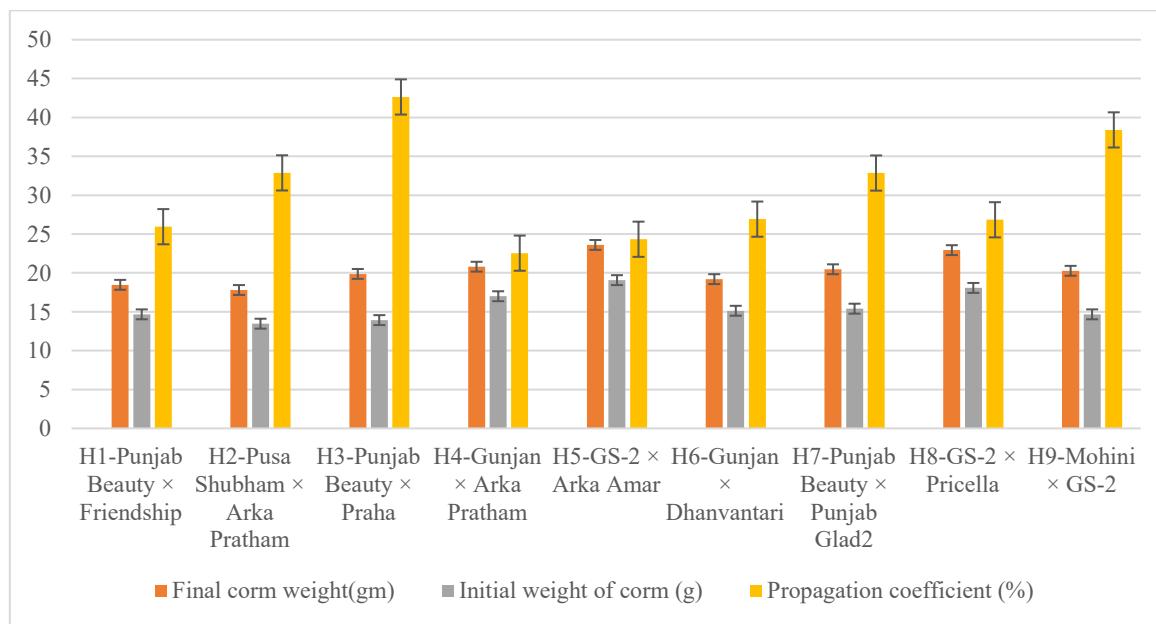



Fig. 3.1. Gladiolus novel hybrid influence on final weight (g), initial corm weight (g), propagation coefficient (%) traits under off-season.

## REFERENCES

[1] Ahmad, S, Singh, R and Kumar, P. Gladiolus cultivation: A review. Horticultural Reviews.2008; 34: 123-145.

[2] Azimi, MH. Evaluation yield and genetically factors in different cultivars of gladiolus. Ornamental Horticulture. 2020; 26: 8-17.

- [3] Blake, GR. Methods of Soil Analysis: Part 1 Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling.1965; Chapter 29.
- [4] Cochran, WG and Cox, GM Experimental Designs. John Wiley and Sons, New York.1950.
- [5] Dhakal, M, Poon, TB, Adhikari, P, Panday, S and Bhattacharai, S. 2023. Characterization of gladiolus genotypes under Khulmaltar condition of Nepal. Journal of Nepal Agricultural Research Council. 2023; 7: 22-29.
- [6] Hossain, MM, Rahman, MM and Islam, MA. Morphological characterization and true seed production in gladiolus genotypes. Bangladesh Journal of Agricultural Research.2012; 37(4): 567-574.
- [7] Jackson, ML. Soil Chemical Analysis. Prentice Hall of India Private Limited, New Delhi.1973; 498: 151-154.
- [8] Kirtimala, N, Nataraj, SK, Kulkarni, BS and Reddy, BS. Stability analysis for earliness and corm characters in gladiolus (*Gladiolus hybridus Hort.*). Journal of Horticultural Sciences. 2011; 6(1): 41-45.
- [9] Kujur, AN, Tirkey, T and Sharma, G. Varietal evaluation of gladiolus (*Gladiolus hybridus Hort.*) under Chhattisgarh plains. Journal of Ornamental Horticulture. 2016; 19: 48-52.
- [10] Kumar, R, Kumar, S and Yadav, YC. Variability studies for yield and yield attributing traits in gladiolus. Progressive Agriculture. 2011; 11(2): 356-360.
- [11] Nalage, NA, Haldankar, M, Gawankar, MS and Rathod, NG. Evaluation of different gladiolus varieties (*Gladiolus hybridus Hort.*) under Konkan conditions of Maharashtra. International Journal of Chemical Studies, 2019; 7(2): 2018-2021.
- [12] Olsen, SR, Cole, CV, Frank, S and Dean, LA. Estimation of available phosphorus by extraction with sodium bicarbonate, United States Development of Agriculture Circular number.1954; 939.
- [13] Patel, R, Tomar, S., Singh, AK. and Kumar, R. Performance of Indian and varieties of gladiolus (*Gladiolus hybridus Hort.*) under Banda agro-climatic conditions. Journal of Ornamental Horticulture. 2022; 25(2): 72-78.
- [14] Piper, CS. Soil and Plant Analysis. Inter Science Publishers, New York.1960; pp:128-136.
- [15] Poon, TB, Rao, TM, Kumar, DP and Dhananjaya, MV. Evaluation of different genotypes of gladiolus for corm and cormel production. Nepal Agricultural Research Journal.2010; 10: 50-54.
- [16] Priyanka, K, Singh, D and Meenu, K. Evaluation of gladiolus genotypes for horticulture traits. International Journal of Agriculture Science. 2023; 15(8): 12599–12601.
- [17] Sankari, A, Rajendran, R and Kumar, S. Evaluation of gladiolus cultivars in Eastern Ghats of Tamil Nadu. Journal of Horticultural Science. 2012; 7(1): 206-208.