

Effect of different orgoprimer and foliar spraying treatments in coriander (*Coriandrum sativum* L.) for seed yield and its quality parameters

D. B. Kothadiya^{1*}, C. A. Babariya², D. B. Bheda³, R. B. Mori⁴, A. V. Barad⁵ and Shikha Dhiman⁵

¹*Junior Research Fellow, Department of Seed Science and Technology, Junagadh Agricultural University, Junagadh, Gujarat, India

²Assistant Professor, Wheat Research Station, Junagadh Agricultural University, Junagadh, Gujarat, India

³Senior Research Fellow, College of Horticulture, Junagadh Agricultural University, Junagadh, Gujarat, India

⁴Senior Research Fellow, Department of Seed Science and Technology, Junagadh Agricultural University, Junagadh, Gujarat, India

⁵Ph.D. scholar, Department of Seed Science and Technology, Junagadh Agricultural University, Junagadh, Gujarat, India

*Corresponding Author

Received: 05 Jun 2025; Received in revised form: 01 Jul 2025; Accepted: 07 Jun 2025; Available online: 13 Jul 2025

©2025 The Author(s). Published by Infogain Publication. This is an open-access article under the CC BY license

(<https://creativecommons.org/licenses/by/4.0/>).

Abstract— *Coriander* is a vital spice crop in India, but its prolonged germination often delays crop establishment. As the world's leading producer, India must adopt innovative agronomic strategies to enhance early growth and overall productivity. To address this, two experiments—one in the laboratory and one in the field were conducted during the Rabi season of 2023–24 at the Seed Testing Laboratory and Sagdividi Farm, Department of Seed Science and Technology, Junagadh Agricultural University, Junagadh. The study aimed to evaluate the effects of orgoprimer and foliar spray treatments on seed quality, growth and yield of the coriander variety Gujarat Coriander-3 (GC-3). Six seed priming treatments were tested under both lab and field conditions, while the field experiment also included foliar spraying treatments as a second factor. Among priming treatments, tender coconut water significantly enhanced germination (81.25%), root length (6.08 cm), shoot length (8.31 cm), seedling length (14.39 cm), seedling fresh (397.70 mg) and dry weight (32.18 mg) and seedling vigour indices (1168.97 and 2614.51). In field performance, it also improved field emergence (82.33%), plant height (76.39 cm), number of umbels per plant (20.88), umbelllets per umbel (8.17), seeds per umbelllet (10.68), seeds per umbel (61.44), 1000-seed weight (12.56 g), and seed yield per plant (12.48 g) and led to earlier flowering (50.50 days). Among foliar sprays, Jivamrut (10%) significantly increased all growth and yield parameters compared to the control. The highest plant height (80.97 cm), with a 40.48% increase over control, was recorded with the interaction of Bijamrut (10%) priming and Jivamrut (10%) foliar spray. Thus, seed priming with tender coconut water and foliar spraying with Jivamrut (10%) can substantially improve the seed quality and yield of coriander.

Keywords – *Coriander, germination, Jivamrut, orgoprimer, yield*

I. INTRODUCTION

India, often referred to as the land of spices, is globally renowned for its diverse use of plant-derived condiments that enhance the sensory qualities of food. Among these, coriander (*Coriandrum sativum* L.), commonly known as “Dhania,” is a widely used spice,

appreciated for its characteristic aroma, flavour and versatility in both fresh and dried forms. Additionally, coriander holds medicinal significance in Ayurvedic practices due to its digestive and therapeutic properties [1]. Belonging to the family *Apiaceae* (*Umbelliferae*), coriander is a diploid species ($2n = 2x = 22$) and its aromatic quality is primarily attributed to the essential oil compound *linalool*

[2]. India is the leading producer, consumer and exporter of coriander, accounting for approximately 80% of global production [3].

Despite its economic and culinary importance, coriander cultivation faces challenges related to poor seed germination and uneven field emergence, often caused by low seed vigour. Seed priming has emerged as an effective method to improve germination performance and seedling establishment. Among various approaches, *orgoprimeing*—the treatment of seeds with organic solutions—has shown potential in enhancing seed metabolic activity and early growth [4]. In addition to seed treatments, nutrient application through foliar sprays offers a cost-effective method to meet crop nutrient demands during critical stages of development [5]. Organic foliar inputs, rich in plant hormones, micronutrients, and beneficial microbes, improve soil health and crop productivity while minimizing environmental risks associated with chemical fertilizers [6].

Given the limitations of chemical-based inputs, there is an increasing emphasis on adopting sustainable and eco-friendly agricultural practices [7]. The emerging era of natural and organic farming promotes soil health, enhances nutrient cycling and reduces environmental pollution, ensuring long-term agricultural sustainability [8]. The reason behind selecting organic compounds as priming agents is that they leverage natural bioactive compounds - such as growth hormones, vitamins and amino acids found in substances like tender coconut water - to enhance seed germination and seedling vigour in an eco-friendly manner while avoiding the potential environmental hazards, chemical residues and dependency on synthetic inputs associated with chemical priming agents. The orgoprimeers [9] and foliar treatments were selected due to their higher nutrient composition, presence of various vitamins, phytohormones, necessary micro-organisms and disease-resistance properties. In this context, the present investigation was undertaken to evaluate the impact of organic seed priming and foliar treatments on the growth, seed quality, and yield attributes of coriander under field conditions.

II. MATERIALS AND METHODS

Two different experiments were carried out during Rabi 2023-24 at the Seed Testing Laboratory, DSST, JAU, Junagadh for laboratory experiment and *Sagdividi* Farm, DSST, JAU, Junagadh for field experiment. Genetically pure seeds of variety Gujarat Coriander-3 (GC-3) were obtained from Research Scientist (G & O), Vegetable Research Station, Junagadh Agricultural University, Junagadh.

Six different priming agents along with control were used for orgoprimeing viz., P₀: Control (untreated dry seeds), P₁: *Panchagavya* - 6 %, P₂: *Bijamrut* - 10 %, P₃: *Jivamrut* - 10 %, P₄: Cow urine - 3 %, P₅: *Trichoderma harzianum* - 4 %, P₆: Tender coconut water. Different foliar spraying treatments (F₀: No spray, F₁: Cow urine - 50 %, F₂: *Jivamrut* - 10 %, F₃: Buttermilk) were also evaluated as the second factor. The experiment was conducted with three replications at 30 × 15 cm spacing. Seeds were soaked in different priming solutions for eight hours at room temperature. Afterwards, the seeds were removed from the solutions and dried in the shade at room temperature until they returned to their original moisture content. Foliar spraying was done twice, each at 35 and 55 days after sowing.

The laboratory germination test was conducted as per ISTA [10] procedure by adopting top of the paper method. 100 seeds in four replications were taken at random from the seed lot of each treatment, placed uniformly on germination paper and kept in the control environment, where the temperature was maintained at 25 ± 0.50°C. The final counts were made on the 21st day of the germination test for normal seedlings and germination was expressed in percentage. Ten normal seedlings were selected randomly from the germination paper (T.P) on final day of counting germination and root and shoot length were measured from the tip of primary root to the tip of shoot. The mean root and shoot length were expressed in centimeters. Seedling length was measured by adding root and shoot length in centimeters. To record seedling fresh weight ten seedlings were counted, cut free from their cotyledon and weighted while still moist. Their weights were recorded in milligram. These seedlings were kept in a hot air oven for 24 hours at a temperature of 100°C as described by Gupta [11]. The weight of the dried seedlings was recorded and expressed in milligram. Seedling vigour index-I and II were computed using following formula suggested by Abdul-Baki and Anderson [12] and mean values were expressed in the whole number.

$$\text{Vigour index I} = \text{Germination (\%)} \times \text{Seedling length (cm)}$$

$$\text{Vigour index II} = \text{Germination (\%)} \times \text{Seedling dry weight (mg)}$$

The laboratory data were analyzed statistically adopting the procedure described by Panse and Sukhatme [13].

The following parameters were recorded for the field study: field emergence (%), days to 50 per cent flowering, plant height (cm), number of umbels per plant, number of umbelllets per umbel, number of seeds per umbelllet, number of seeds per umbel, 1000 seed weight (g) and seed yield per plant (g). From each treatment of each

replication, five selected plants were tagged for recording observations. Mean of five plants for each character was worked out and used for statistical analysis. Observations were recorded at maturity stage of plant growth on all the quantitative characters. The experimental data was analysed statistically by adopting randomized block design as described by Panse and Sukhatme [13] for field emergence and randomized block design (Factorial) as described by Cochran and Cox [14] for the rest of the characters and ANOVA was used to assess treatment effects.

III. RESULTS AND DISCUSSION

There is significant difference observed among priming treatments for all laboratory observations under study. The results of laboratory observations are depicted in Figure 1 and Table 1 and 2. Seeds primed with tender coconut water (P_6) recorded significantly higher germination (81.25%, a 21.72 % increase), root length (6.08 cm, a 41.72 % increase), shoot length (8.31 cm, a 30.66 % increase), seedling length (14.39 cm, a 35.12 % increase), seedling fresh weight (397.70 mg, a 21.90 % increase) and seedling dry weight (32.18 mg, a 30.49 % increase), seedling vigour index-I (1168.97, a 64.54 % increase) and seedling vigour index-II (2614.51, a 59.05 % increase). *Bijamrut* showed at par effect (20.60 %, 39.39 %, 27.99 %, 32.68 %, 20.41 %, 28.43 %, 60.06 % and 55.04 % increase, respectively) compared to control. Control seeds showed the lowest result for all the above-mentioned characters.

The significantly superior above-mentioned traits were recorded in seeds primed with tender coconut water might be due to its content of enzymes, phytohormones and growth promoting substances especially cytokinin that promotes cell wall degradation. This can help soften hard seed coats, allowing the radicle (root) and plumule (shoot) to emerge more easily during germination. These hormones promote cell division and cell elongation, leading to increased seedling size and weight. Similar results were obtained by different researchers for different crops [15, 16, 17, 18, 19, 9].

The results of different field parameters are given in Table 3-11. Irrespective of foliar spraying, there was a significant difference among priming treatments for all the characters studied. Seeds primed with tender coconut water (P_6) recorded significantly higher field emergence (82.33 %, a 25.37 % increase), plant height (76.39 cm, a 19.62 % increase), number of umbels per plant (20.88, a 23.99 % increase), number of umbellets per umbel (8.17, a 21.04 % increase), number of seeds per umbellet (10.68, a 25.06 % increase), number of seeds per umbel (61.44, a 19.58 % increase), 1000 seed weight (12.56 g, a 12.04 % increase) and seed yield per plant (12.48 g, a 15.13 % increase), while

also reducing the number of days to 50 % flowering (50.50) by 12.38 % compared to the control. *Bijamrut* showed at par effect (19.28 %, 17.08 %, 19.54 %, 19.26 %, 21.66 %, 16.00 %, 9.19 % and 11.72 % increase respectively) compared to control. Control seeds showed the lowest result for all the above-mentioned characters.

The notable improvement in plant growth and yield traits observed in seeds treated with tender coconut water (P_6) and *Bijamrut* (P_2) could be attributed to the presence of plant growth regulators such as auxins, cytokinins and gibberellins. These hormones are known to enhance stem elongation [15], thereby promoting quicker germination and vigorous early seedling development. Coconut water activates key metabolic processes, including starch breakdown, which boosts energy availability and supports rapid radicle emergence and robust seedling establishment [20]. Moreover, the natural sugars and electrolytes it contains help regulate osmotic balance during the hydration phase, minimizing the risk of imbibitional injury and encouraging uniform sprouting [21]. Its rich composition of vitamins and phenolic compounds also imparts antioxidant properties, which protect seed tissues from oxidative damage during the germination process [22].

In addition, tender coconut water provides vital nutrients like potassium, magnesium, and calcium, which enhance enzyme functions and energy metabolism, thereby supporting improved seedling establishment [20]. This contributes to notable advancements in plant growth, development and yield components, particularly influencing flowering and fruit or pod formation. The use of tender coconut water and *Bijamrut* as seed priming agents has been shown to improve growth and yield traits in crops such as okra and cowpea, respectively [19, 23]. Regardless of the type of orgoprime treatment, the number of days to 50% flowering showed no significant variation across different foliar spray treatments. However, foliar application of 10% *Jivamrut* (F_2) significantly boosted plant height, number of umbels per plant, umbellets per umbel, seeds per umbellet, seeds per umbel, 1000-seed weight and seed yield per plant, showing increases of 72.36 cm (+5.80%), 19.79 (+8.98%), 7.83 (+8.75%), 10.41 (+19.38%), 59.35 (+12.02%), 12.41 g (+8.57%) and 12.20 g (+9.42%) respectively, when compared to the control. This was followed by the performance of 50% cow urine (F_1). The lowest values for these parameters were recorded in the untreated control group (F_0), with plant height of 68.39 cm, umbels per plant at 18.16, umbellets per umbel at 7.20, seeds per umbellet at 8.72, seeds per umbel at 52.98, 1000-seed weight at 11.43 g and seed yield per plant at 11.15 g.

When used as a foliar spray, *Jivamrut* boosts plant growth and yield by enhancing nutrient availability, stimulating microbial activity, and supporting various metabolic processes in plants. It supplies key nutrients like nitrogen, phosphorus and potassium, which are efficiently absorbed through the foliage, thereby aiding chlorophyll formation and improving photosynthetic efficiency [24]. The presence of beneficial microorganisms in *Jivamrut* helps in nutrient solubilization and offers protection against plant diseases [25]. Furthermore, it contains natural growth regulators such as auxins and gibberellins that encourage vegetative growth and flowering [26]. Its organic constituents also contribute to increased stress resistance and higher seed yield [27]. Foliar application of *Jivamrut* has shown to enhance all related growth and yield parameters in maize [28], with similar positive effects observed in cowpea [29]. In rice, the use of 10 % *Jivamrut*

foliar spray also led to improvements in plant development and yield performance [30].

The combined effect of seed priming and foliar spray treatments was found to be non-significant for most traits, including days to 50% flowering, number of umbels per plant, umbelllets per umbel, seeds per umbellet, seeds per umbel, 1000-seed weight and seed yield per plant. However, plant height exhibited a significant response to the interaction of these treatments. The tallest plants (80.97 cm) were observed in the P_2F_2 treatment combination, where seeds were primed with 10% *Bijamrut* and sprayed with 10% *Jivamrut*, while the shortest plants (57.64 cm) were recorded in the untreated control group (P_0F_0). This reflects a 40.48% increase in plant height in P_2F_2 compared to the control.

IV. FIGURES AND TABLES

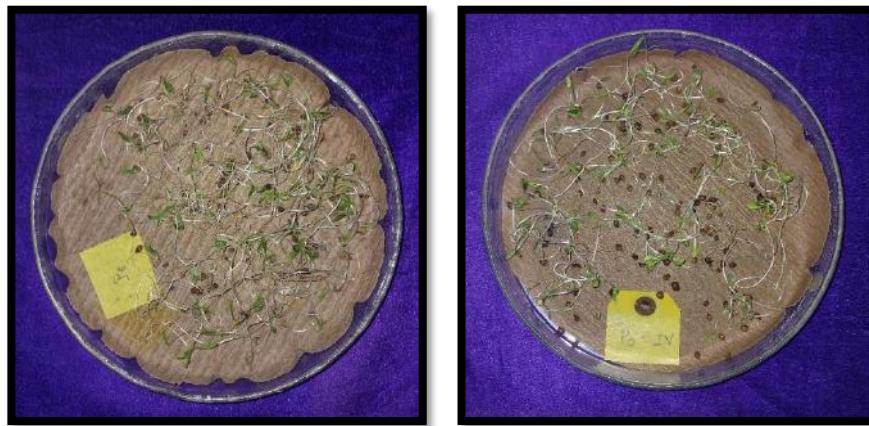


Figure 1: Germination of coriander seed in tender coconut water (P_6) and control (P_1)

Table 1: Effect of seed priming on germination (%), shoot length (cm), root length (cm) and seedling length (cm)

Treatment	Germination (%)	Shoot length (cm)	Root length (cm)	Seedling length (cm)
P_0	66.75	4.29	6.36	10.65
P_1	77.75	5.67	7.58	13.25
P_2	80.50	5.98	8.14	14.13
P_3	74.25	5.10	7.15	12.25
P_4	76.75	5.45	7.69	13.14
P_5	70.50	4.82	6.72	11.53
P_6	81.25	6.08	8.31	14.39
S. Em. \pm	0.99	0.11	0.16	0.20
C. D. at 5%	2.90	0.33	0.48	0.60
C. V. %	2.62	4.21	4.41	3.20

Table 2: Effect of seed priming on Seedling fresh weight (mg), seedling dry weight (mg), seedling vigour index I and seedling vigour index II

Treatment	Seedling fresh weight (mg)	Seedling dry weight (mg)	Seedling vigour index I	Seedling vigour index II
P ₀	326.25	24.66	710.46	1643.88
P ₁	378.70	29.41	1030.58	2286.09
P ₂	392.83	31.67	1137.19	2548.66
P ₃	364.50	27.35	909.07	2029.01
P ₄	379.28	29.49	1008.63	2261.76
P ₅	350.45	26.75	813.08	1886.14
P ₆	397.70	32.18	1168.97	2614.51
S. Em. \pm	4.80	0.70	20.21	46.69
C. D. at 5%	14.11	2.05	59.44	137.35
C. V. %	2.59	4.84	4.17	4.28

Table 3: Effect of orgoprime on field emergence (%) of coriander

Treatments	Field emergence (%)
P ₀	65.67
P ₁	73.67
P ₂	78.33
P ₃	72.67
P ₄	74.00
P ₅	68.33
P ₆	82.33
S. Em. \pm	4.64
C. D. at 5%	13.64
C. V. %	4.13

Table 4: Effect of orgoprime, foliar spraying and their interaction on days to 50 per cent flowering of coriander

Characters	Days to 50 per cent flowering					
	Factor	F ₀	F ₁	F ₂	F ₃	Mean (P)
P ₀	59.00	56.67	54.67	56.67	56.75	56.75
P ₁	53.00	52.33	52.67	57.33	53.83	53.83
P ₂	52.33	52.00	51.00	52.00	51.83	51.83
P ₃	56.33	56.00	56.33	54.00	55.67	55.67
P ₄	55.00	55.67	55.33	54.00	55.00	55.00
P ₅	56.33	56.33	55.33	55.67	55.92	55.92
P ₆	50.33	50.33	49.33	52.00	50.50	50.50

Mean (F)	54.62	54.19	53.52	54.52	54.11
	S. Em. \pm	C. D. at 5%	S.D.	C.V. %	
P	0.83	2.34	3.35	5.29	
F	0.62	NS	S.E.		
P \times F	1.65	NS	0.37		

Table 5: Effect of orgoprimer, foliar spraying and their interaction on plant height (cm) of coriander

Characters	Plant height (cm)					
	Factor	F₀	F₁	F₂	F₃	Mean (P)
P₀	57.64	66.62	65.31	65.87	63.86	
P₁	67.94	67.50	76.94	68.59	70.24	
P₂	75.76	76.08	80.97	66.27	74.77	
P₃	68.11	69.33	65.54	69.93	68.23	
P₄	68.57	68.25	75.33	67.45	69.90	
P₅	68.40	67.93	65.41	69.12	67.71	
P₆	72.34	78.48	77.05	77.67	76.39	
Mean (F)	68.39	70.60	72.36	69.27	70.45	
	S. Em. \pm	C. D.e at 5%	S.D.	C.V. %		
P	1.37	3.88	6.44	6.73		
F	1.03	2.93	S.E.			
P \times F	2.74	7.76	0.70			

Table 6: Effect of orgoprimer, foliar spraying and their interaction on number of umbels per plant of coriander

Characters	Number of umbels per plant					
	Factor	F₀	F₁	F₂	F₃	Mean (P)
P₀	16.07	16.87	17.80	16.63	16.84	
P₁	18.60	19.10	20.17	18.90	19.19	
P₂	19.53	19.93	21.00	20.03	20.13	
P₃	17.67	18.20	19.27	17.93	18.27	
P₄	18.03	18.70	19.53	18.50	18.69	
P₅	17.17	17.77	18.93	17.70	17.89	
P₆	20.07	21.00	21.80	20.67	20.88	
Mean (F)	18.16	18.80	19.79	18.62	18.91	
	S. Em. \pm	C. D. at 5%	S.D.	C.V. %		
P	0.45	1.28	1.90	8.28		
F	0.34	0.97	S.E.			
P \times F	0.90	NS	0.21			

Table 7: Effect of orgoprimer, foliar spraying and their interaction on number of umbellates per umbel of coriander

Characters	Number of umbellates per umbel				
Factor	F ₀	F ₁	F ₂	F ₃	Mean (P)
P ₀	6.60	6.63	7.00	6.77	6.75
P ₁	7.27	7.67	8.03	7.53	7.63
P ₂	7.80	8.07	8.43	7.90	8.05
P ₃	6.87	7.23	7.60	7.07	7.19
P ₄	7.23	7.60	7.97	7.50	7.58
P ₅	6.73	6.90	7.20	6.83	6.92
P ₆	7.87	8.13	8.57	8.10	8.17
Mean (F)	7.20	7.46	7.83	7.39	7.50
	S. Em. ±	C. D. at 5%	S.D.	C.V. %	
P	0.16	0.47	0.73	7.60	
F	0.12	0.35	S.E.		
P × F	0.33	NS	0.08		

Table 8: Effect of orgoprimer, foliar spraying and their interaction on number of seeds per umbellate of coriander

Characters	Number of seeds per umbellate				
Factor	F ₀	F ₁	F ₂	F ₃	Mean (P)
P ₀	7.83	8.70	9.23	8.40	8.54
P ₁	8.93	10.00	11.07	9.73	9.93
P ₂	9.50	10.53	11.23	10.30	10.39
P ₃	8.43	9.43	10.23	9.30	9.35
P ₄	8.67	9.77	10.37	9.43	9.56
P ₅	7.87	8.83	9.30	8.63	8.66
P ₆	9.80	11.00	11.47	10.47	10.68
Mean (F)	8.72	9.75	10.41	9.47	9.63
	S. Em. ±	C. D. at 5%	S.D.	C.V. %	
P	0.23	0.65	1.18	8.27	
F	0.17	0.49	S.E.		
P × F	0.46	NS	0.13		

Table 9: Effect of orgoprimer, foliar spraying and their interaction on number of seeds per umbel of coriander

Characters	Number of seeds per umbel				
Factor	F ₀	F ₁	F ₂	F ₃	Mean (P)
P ₀	48.07	52.27	55.23	49.93	51.38
P ₁	54.27	58.37	60.50	55.97	57.28
P ₂	56.77	60.47	62.40	58.77	59.60
P ₃	51.47	55.23	57.13	55.73	54.89

P₄	53.07	56.93	58.97	54.97	55.98
P₅	49.13	53.77	55.80	51.20	52.48
P₆	58.07	62.27	65.40	60.03	61.44
Mean (F)	52.98	57.04	59.35	55.23	56.46
	S. Em. ±	C. D. at 5%	S.D.	C.V. %	
P	1.39	3.94	5.74	8.52	
F	1.05	2.98	S.E.		
P × F	2.78	NS	0.63		

Table 10: Effect of orgoprimeing, foliar spraying and their interaction on 1000 seed weight (g) of coriander

Characters	1000 seed weight (g)					
	Factor	F₀	F₁	F₂	F₃	Mean (P)
P₀	10.89	11.38	11.57	11.01	11.21	
P₁	11.59	12.05	12.62	11.82	12.02	
P₂	11.86	12.35	12.78	11.97	12.24	
P₃	11.06	11.68	12.19	11.36	11.57	
P₄	11.57	12.05	12.56	11.72	11.97	
P₅	10.95	11.58	12.07	11.19	11.45	
P₆	12.07	12.68	13.10	12.39	12.56	
Mean (F)	11.43	11.97	12.41	11.64	11.93	
	S. Em. ±	C. D. at 5%	S.D.	C.V. %		
P	0.15	0.43	0.73	4.43		
F	0.12	0.33	S.E.			
P × F	0.31	NS	0.08			

Table 11: Effect of orgoprimeing, foliar spraying and their interaction on seed yield per plant (g) of coriander

Characters	Seed yield per plant (g)					
	Factor	F₀	F₁	F₂	F₃	Mean (P)
P₀	10.43	11.08	11.27	10.58	10.84	
P₁	11.32	11.87	12.35	11.54	11.77	
P₂	11.69	12.16	12.74	11.86	12.11	
P₃	10.74	11.39	11.91	11.07	11.28	
P₄	11.27	11.78	12.29	11.45	11.70	
P₅	10.65	11.28	11.78	10.92	11.16	
P₆	11.96	12.68	13.07	12.23	12.48	
Mean (F)	11.15	11.75	12.20	11.38	11.70	
	S. Em. ±	C. D. at 5%	S.D.	C.V. %		
P	0.23	0.66	0.94	6.89		
F	0.18	0.50	S.E.			
P × F	0.47	NS	0.10			

V. CONCLUSION

The findings revealed that seed priming with tender coconut water significantly improved germination and all associated seed quality parameters. Additionally, tender coconut water priming and 10% *Jivamrut* foliar spraying notably increased field emergence, plant height and various yield-related traits. The interaction between priming and foliar spray treatments was statistically non-significant for most traits, except for plant height, which showed a marked difference. This suggests that priming and foliar applications acted independently in influencing most parameters. These organic inputs offer a low-cost and eco-friendly alternative to synthetic chemicals, making them practical and accessible for farmers. Given that both tender coconut water and *Jivamrut* are inexpensive and locally available, their use can lower cultivation costs while boosting productivity. Based on the results, it can be recommended that coriander seeds treated with tender coconut water and sprayed with 10% *Jivamrut* separately can lead to improved seed yield and related traits. Future research should investigate their long-term effects on soil health, microbial dynamics, and overall crop productivity, along with their integration into organic farming systems and validation under diverse agro-climatic conditions.

ACKNOWLEDGEMENTS

The authors thank the College of Agriculture, Junagadh Agricultural University, for providing the necessary infrastructure and resources.

REFERENCES

- [1] Sahib, N. G., Anwar, F., Gilani, A. H., Hamid, A. A., Saari, N. & Alkhafry, K. M. (2013). Coriander (*Coriandrum sativum* L.): A potential source of high-value components for functional foods and nutraceuticals-A review. *Phytother. Res.*, **27**(10): 1439-1456. <http://dx.doi.org/10.1002/ptr.4897>
- [2] Nadeem, M., Anjum, F. M., Khan, M. I., Tehseen, S. & Sultan, J. I. (2013). Nutritional and medicinal aspects of coriander (*Coriandrum sativum* L.): A review. *Brit. Food. J.*, **115**(5): 743-755. <https://doi.org/10.1108/00070701311331526>
- [3] D'Souza, R. & Shah, K. (2016). Coriander - crop survey and analysis. p.4 <https://www.nirmalbang.com/>
- [4] Khan, A. A. (1992). Preplant physiological seed conditioning. pp. 131-181. In: Janick J. (Ed.) *Horticultural reviews*. New York, John Wiley & Sons. <https://doi.org/10.1002/9780470650509.ch4>
- [5] Chandrasekhar, C. N. & Bangarusamy, U. (2003). Maximizing the yield of mungbean by foliar application of growth regulating chemicals and nutrients. *Mysore J. Agric. Sci.*, **90**(1): 142-145. https://masujournal.org/view_archive_journal.php
- [6] Manonmani, V. & Srimathi, R. (2016). Influence of seed priming on physiological performance of foxtail, little and proso millets. *Int. J. Agric. Sci. Res.*, **6**(4): 176-186. <https://www.academia.edu/28659199/>
- [7] Zhou, W., Li, M. & Achal, V. (2024). A comprehensive review on environmental and human health impacts of chemical pesticide usage. *Emerg. Contam.*, **11**(1): 1-13. <http://dx.doi.org/10.1016/j.emcon.2024.100410>
- [8] Qamar, R., Ashraf, S., Javeed, H. M. R., Rehman, A., Yaseen, M., Khan, B. A., Abbas, T., Saeed, F. & Ali, M. (2024). Regenerative organic farming for encouraging innovation and improvement of environmental, social, and economic sustainability. In: Kumar, S., Meena, R. S., Sheoran, P. & Jhariya, M. K., editors. *Regenerative agriculture for sustainable food systems*. Springer, Singapore. p. 175-216 https://doi.org/10.1007/978-981-976691-8_6
- [9] Mori, R. B., Patel, J. B., Vaghasiya, K. P., Bhoot, H. V. & Barad, A. V. (2024). Effect of seed priming on germination and seedling growth of sesame (*Sesamum indicum* L.). *Biol. Forum.* **16**(3): 78-82. <https://www.researchgate.net/publication/379374383>
- [10] ISTA. (2015). International Rules for Seed Testing. The International Seed Testing Association. **1**(10): 215
- [11] Gupta, P. C. (1993). Seed vigour testing. *Handbook of Seed Testing*. New Delhi, pp 242-249.
- [12] Abdul-Baki, A. A. & Anderson, J. D. (1973). Vigour determination in soybean seed by multiple criteria. *Crop Science*, **13**(6): 630-633.
- [13] Panse, V. G. & Sukhatme, P. V. (1995). Statistical methods for Agricultural Workers, Indian Council of Agricultural Research, New Delhi.
- [14] Cochran, W. G. & Cox, G. M. (1957). *Experimental Designs*, 2nd edition. Wiley, New York. 1957. <https://www.wiley.com/en-us/>
- [15] Dunsin, O., Aboyeji, C. M. and Nayan, G. (2016). Influence of moringa leaf extract and coconut water as priming agent to improves the emergence and early seedling growth in cucumber. *Int. J. Org. Agric. Res. Dev.*, **12**(1): 39-46.
- [16] Amarnath, B. H., Chaurasia, A. K. and Kumar, A. (2018). Effect of priming with botanicals and animal waste on germination and seedling length of sorghum (*Sorghum bicolor* L.) Seeds. *Int. J. Curr. Microbiol. Appl. Sci.*, **7**: 2917-2923.
- [17] Bhavyasree, R. K. and Vinothini, N. (2019). Enhancement of seed quality through orgoprime in brinjal (*Solanum melongena* L.). *Int. J. Chem. Stud.*, **7**(1): 242-244.
- [18] Vinothini, N. and Bhavyasree, R. K. (2019). Orgoprime to enhance seed germination in groundnut (*Arachis hypogaea* L.). *Res. J. Agric. Sci.*, **10**(1): 231-233.
- [19] Lakmali, K. N. and Seran, T. H. (2022). Impact of seed priming with king coconut water on growth and yield of okra (*Abelmoschus esculentus* L.). *J. Food Agric.*, **15**(2): 27-46.
- [20] Yong, J. W., Ge, L., Ng, Y. F. & Tan, S. N. (2009). The chemical composition and biological properties of coconut (*Cocos nucifera* L.) water. *Molecules*, **14**(12): 5144-5164. <https://www.mdpi.com/1420-3049/14/12/5144>

- [21] McDonald, M. B. (2000). Seed priming. In: Black M, Bewley JD, editors. *Seed technology and its biological basis*. Sheffield Academic Press, Sheffield. p. 287-325.
- [22] Ramesh, S. V. & Praveen, S. (2024). Bio-nutritional constituents of coconut. In: Ramesh, S. & Praveen, S., editors. *Coconut-based nutrition and nutraceutical perspectives*. Springer, Singapore. p. 17-42. https://doi.org/10.1007/978-981-97-3976-9_2
- [23] Devaraj, G. & Rai, P. K. (2022). Standardization of selected organic seed priming treatment on growth, yield and yield attributing traits of cowpea (*Vigna unguiculata* L.) var. C-152. *Front. Crop Improv.*, **10**(3): 1255-1259. <https://www.researchgate.net/publication/>
- [24] Sivagamy, K., Yogameenakshi, P., Vijayasanthi, V. A., Manimegalai, R., Punitha, A. & Santhi, P. (2021). Role of organics in millets production under rain-fed situations- A review [Internet] [cited 2025 Mar 7]. **1**(1): 1-13. <https://s3.ap-south-1.amazonaws.com/semj/articles/j201/7dc9b760-ca9d-11eb-9623-bdd8bb262b5d/f>
- [25] Gurjar, R. P. S., Bhati, D. & Singh, S. K. (2024). Impact of *Jeevamrut* formulations and biofertilizers on soil microbial and chemical attributes during potato cultivation. *J. Appl. Biol. Biotechnol.*, **12**(4): 158-171. <https://pdfs.semanticscholar.org/2b2c/63a329a4134767c0c0c88b8dc2ec47e38b40.pdf>
- [26] Brar, P. S., Kaushal, R. & Bhardwaj, G. (2019). A review on beneficial effects of PGPR and noble liquid manures in enhancing soil fertility and sustainability. *Int. J. Curr. Microbiol. Appl. Sci.*, **8**: 409-415. <https://doi.org/10.20546/ijcmas.2019.804.045>
- [27] Mevada, K. & Makwana, B. D. Efficiency of plant nutrient enhancer for sustainable agriculture in diverse agro-ecosystem. *J. Agric. Ecol.*, **16**: 99-104. <https://doi.org/10.58628/jae-2316-219>
- [28] Ramesh, S., Sudhakar, P. & Elankavi, S. (2018). Effect of organic foliar nutrition on growth and yield of maize (*Zea mays* L.). *Int. J. Res. Anal. Rev.*, **5**(3): 64-67. https://ijrar.com/upload_issue/ijrar_issue_1821.pdf
- [29] Sutar, R., Sujith, G. M. & Devakumar, N. (2019). Growth and yield of cowpea [*Vigna unguiculata* (L.) Walp] as influenced by *Jivamrut* and *Panchagavya* application. *Legume Res.*, **42**(6): 824-828. <https://doi.org/10.18805/LR-3932>
- [30] Thakare, U. E., Chavan, A. P., Bodake, P. S., Mahadkar, U. V., Sawardekar, S. V. & Salvi, V. G. (2023). Influence of organic manures and organic sprays on growth and yield of rice (*Oryza sativa* L.). *J. Pharm. Innov.*, **12**(7): 2568-2571. <https://www.thepharmajournal.com/archives/2023/vol12issue7/PartAD/12-7-404-437.pdf>