Analysis of Genetic Impurity of An Original Cultivar Duku (Lansium parasiticum (Osbeck.) K.C. Sahni & Bennet.), from Jambi, Indonesia Using ITS and MatK Gene

Analysis of Genetic Impurity of An Original Cultivar Duku (Lansium parasiticum (Osbeck.) K.C. Sahni & Bennet.), from Jambi, Indonesia Using ITS and MatK Gene ( Vol-3,Issue-2,March - April 2018 )

Author: Syamsuardi, Chairul, Pinta Murni

ijeab doi crossref DOI: 10.22161/ijeab/3.2.16

Keyword: barcoding DNA, duku, ITS, Haplotype, Lansium parasiticum, MatK.

Abstract: Duku Kumpeh is a original cultivar of Duku (Lansium parasiticum) from Kumpeh a local village in the Jambi, Indonesia. The understanding about genetic information is very important for sustainability used of this prospoctive germplasm of tropical fruit. Identification molecular is very essential to distinguish duku kumpeh with other cultivars of duku in Indonesia. Molecular characteristic of sixteen accessions of Duku Kumpeh were clarified using ITS and MatK gene. DNA from sixteen accessions duku from Jambi were extracted using Genomic KIT plant and amplified them using primer of ITS and MatK gene. The results of amplification DNA samples using both of primer ITS and MatK gene indicated that all of fifteen samples were effectively amplified. So this both of two genes are potential to use for barcoding DNA Duku. Six haplotype of ITS gene and eleven haplotype of MatK gene were identified. The accessions from kumpeh were have different haplotypes. There were genetic impurity in accessions of duku kumpeh. Genetic study and selection of duku kumpeh accessions with superior quality and similar genetic composition were needed in the future.


[1] Nooteboom, H.P., W.J.J.O. de Wilde, D.W. Kirkup, P.F. Stevens, M.J.E. Coode, L.G. Saw. 2017. Flora Malesiana. Lansium domesticum. avalable at http:// portal.
[2] M. L. Tilaar, W. Wong, A.S. Ranti, S. M. Wasitaatmadja, Surya-ningsih, F.D. Junardy, and Maily. 2008. Review of Lansium domesticum Corrêa and its use in cosmetics Boletín Latino-americano y del Caribe de Plantas Medicinales Aromáticas 7: 183 – 189.
[3] R. A. Yadav, Pednekar, A. Avalaskar, M. Rathi, Y. Rewachandani. 2015. A comprehensive review on Meliaceae family World J. Pharm. Sci. 3: 1572-1577.
[4] The Plant List. Version 1.1. 2013. Published on the Internet; (accessed 1st January).
[5] L. Hanum, R. S. Kasiamdari, Santosa, and Rugayah. 2013. The Phylogenetic Relationship Among Varieties of Lansium domesticum Correa Based on ITS rDNA Sequences. Indonesian Journal of Biotechnology 18: 122-132.
[6] P. Murni, Syamsuardi, Nurainas, E. Mansyah and Chairul. 2016. Genetic Variability and out-crossing rate in open pollinated Duku ‘Kumpe’ (Lansium parasiticum (osbeck) K.C.Sahni & Bennet.), a Potential Type of Duku from Jambi, Indonesia. Der Pharmacia Lettre 8: 85-191.
[7] L. Meizi, Y. Hui, L. Kun, M. Pei, Z. Whenbin and L. Ping. 2012. Authentification of Illium verum using a DNA Barcode psbA-trnH. Journal of Medicinal Plant Research. 6: 3156-3161.
[8] X.C. Huang, X.Q. Ci, J.G. Conran and J. Li. 2015. Application of DNA barcodes in Asian Tropical trees, A case study from Xishuangbanna Nature Reserve, Southwest China. PLOS ONE 1: 1-17.
[9] Q. Huang, Z. Duan, J. Yang, X. Ma, R. Zhan, H. Xu and W. Chen. 2014. SNP typing for germplasm identification of Amomum villosum Lour based on DNA barcoding markers. PLOS ONE: 1-14,.
[10] R.S. Purty and S. Chatterjee. 2016. DNA barcoding: an effective technique in molecular taxonomy, Austin Journal of Biotechnology & Bioengineering 3: 1-10
[11] C. Castro, A. Hernandez, L. Alvarado, D. Flores. 2015. DNA Bar-codes in Fig cultivars (Ficus carica L.) using ITS regions of ribosomal DNA, the psbA-trnH Spacer and the matK coding sequence. American Journal of Plant Sciences 6: 95-102.
[12] W.J. Kim, Y.Ji, G. Choi, Y. 1987. M. Kang, S. Yang and B.C. Moon, 2016. Molecular identification and phylogenetic analysis of important medicinal plant species in genus Paeonia based on rDNA-ITS, matK, and rbcL DNA barcode sequences, Genetics and Molecular Research 15: 1-15.
[13] J.J. Doyle and J.L. Doyle. 1987. A rapid DNA isolation procedure from small quantities of fresh leaf tissue. Phytochemistry Bulletin 19: 11–15.
[14] T.A. Hall. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41: 95-98.
[15] J. D. Thompson, T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgins. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools, Nucleic Acids Research 25: 4876-4882.
[16] K. Tamura, G. Stecher, D. Peterson, A. Filipski, and S. and Kumar. 2013. MEGA6: Molecular Evolu-tionary Genetics Analysis version 6.0., Molecular Biology and Evolution 30: 2725-2729.
[17] X. Xia. 2017. DAMBE6: New tools for microbial genomics, phylogenetics and molecular evolution, Journal of Heredity 108: 431-437.
[18] M. Nei and S. Kumar. 2000. Molecular Evolution and Phylogenetics. Oxford University Press, New York.
[19] S.Y. Lee, W.L. Ng, M.N. Mahat, M, Nazre R. Mohamed. 2016. DNA Barcoding of the Endanger-ed Aquilaria (Thymelaeaceae) and Its Application in Species Authentication of Agarwood Products Traded in the Market. PLoS ONE 11(4): 1-21.
[20] CBOL Plant Working Group. 2009. A DNA Barcode For Land Plants. Proceedings of the National Academy of Sciences USA 106: 12794–12797.
[21] N. Saitou and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylo-genetic trees. Molecular Biology and Evolution 4: 406-425.
[22] J. Felsenstein. 1985. Confidence limits on phylo-genies: An approach using the bootstrap. Evolution 39: 783-791.
[23] W.J. Kress, K.J. Wurdack, E. A. Zimmer, L.A. Weigt and D.H. Janzen. 2005. Use of DNA barcodes to identify flowering plants. PNAS 102(23): 8369–8374.
[24] Bolson, E. de C. Smid, M. L. Brotto2 and V. S. Pereira. 2015. ITS and trnH-psbA as Efficient DNA Barcodes to Identify Threatened Commercial Woody Angiosperms from Southern Brazilian Atlantic Rainforests. PLOS ONE: 1-18.
[25] H. Schroeder and M. Fladung. 2014. Differentiation of Populus species by chloroplast SNP markers for barcoding and breeding approach. IForest 8: 544-546.
[26] M. Bolson, E. De C. Smith, M.L. Brotto, V. Silva-Pereira. 2015. ITS and trnH-psbA as efficiency DNA barcodes to identify threatened commercial woody angiosperm from Southern Brazilian Atlantic rainforest, PLOS ONE 2: 1-18.
[27] T. Hidayat, , F.I. Abdullah, C. Koppashamy, A.B. Samad and A. Wagiran. 2012. Molecular identification of Malaysian Pineapple cultivar based on In Ternal Transcribed Spacer Region. APCBEE Procedia 4: 146-151,
[28] W. Heise, W. Babik, D. Kubisz, and L. Kajtoch. 2015. A three marker DNA barcoding approach for ecological studies of xerothermic plants and herbivorous insects from Central Europe. Botanical Journal of Linnean Society 177: 576-592.

Cite this Article: Show All (MLA | APA | Chicago | Harvard | IEEE | Bibtex)

Total View: 52 Downloads: 11 Page No: 441-446