Biomass production and Symbiotic Nitrogen Fixation in the Legume Sulla carnosa in its Natural Biotope (sebkha ElKelbia)

Biomass production and Symbiotic Nitrogen Fixation in the Legume Sulla carnosa in its Natural Biotope (sebkha ElKelbia) ( Vol-2,Issue-6,November - December 2017 )

Author: Korked Hajer, Bousnina Hbib, Krouma Abdelmajid

ijeab doi crossref DOI: 10.22161/ijeab/2.6.59

Keyword: Feed production, ionic repartition, sebkha, Sulla carnosa, Symbiotic nitrogen fixation.

Abstract: Wild legumes (herbs, shrubs or trees) play a critical role in natural ecosystems, agriculture, and agroforestry, where their ability to fix nitrogen makes them excellent colonizers of low-N environments, and hence an economic and environmentally friendly species. The field natural nodulation of the Tunisian Sulla crnosa, its symbiotic-efficiency and feed production potentiality in its saline biotope (sebkha d’El kelbia) were investigated in this study. A greenhouse experiment was conducted on plants transferred from sebkha with their soil in pots to explore the maximum potentialities of biomass production and nitrogen fixation of this legume when water is not a limiting factor (natural soil salinity was maintained in greenhouse). Obtained field and greenhouse study demonstrated that Sulla carnosa can be a good candidate for saline agriculture regarding its important ability to grow, produce biomass and fix nitrogen under high level of salinity (about 150 mM NaCl). This legume protects its photosynthetic and symbiotic organs against their overload with sodium by an important uptake of potassium and accumulation of Na in the roots. Sulla carnosa can play a goal role in the sustainable development in a region traditionally considered marginal.


[1] Abdelguerfi-Berrekia, R., Abdelguerfi, A., Bounaga, N., Guittonneau, G.C. 1991. Répartition des espèces spontanées du genre Hedysarum selon certains facteurs du milieu en Algérie. Fourrages 126:187- 207.
[2] Bieleski, R. L. 1982. Sugar alcohols. Plant Carbohydrates I, in: F.A. Loewus, W. Tanner (Eds.), Encyclopedia of plant physiology, Vol. 13A, Springer, Berlin, 1982, pp. 158– 192.
[3] Bruning, B., Rozema, J. 2013. Symbiotic nitrogen fixation in legumes: Perspectives of saline agriculture. Environmental and Experimental Botany 92: 134– 143.
[4] Delgado, M.J., Ligero, F., Lluch, C. 1994. Effects of salt stress on growth and nitrogen fixation by pea, faba-bean, common bean and soybean plants. Soil Biology and Biochemistry 26: 371- 376.
[5] Ferri, A., Lluch, C., Ocana, A. 2000. Effect of salt stress on carbon metabolism and bacteroid respiration in root nodules of common bean (Phaseolus vulgaris L.). Plant Biology 2: 396- 402.
[6] Flowers, T.J., Colmer, T.D. 2008. Salinity tolerance in halophytes. New Phytologyst 179: 945– 963.
[7] Flowers, T.J., Galal, H.K., Bromham, L. 2010. Evolution of halophytes: multiple origins of salt tolerance in land plants. Functional Plant Biology 37: 604– 612.
[8] .Garg, N., Singla, R.. 2004. Growth, photosynthesis, nodule nitrogen and carbon fixation in the chickpea cultivars under salt stress. Brazilian Journal of Plant Physiology 16(3):137- 146.
[9] Kouas, S., Slatni, T., Salah, I.B., Abdelly, C. 2010. Eco-physiological responses and symbiotic nitrogen fixation capacity of salt-exposed Hedysarum carnosum plants. African Journal of Biotechnology, 9(44): 7462- 7469.
[10] Lachaal, M., Abdelly, C., Soltani, A., Hajji, M., Grignon, C. 1995. Réponse physiologique de quelques légumineuses spontanées et cultivées à la contrainte saline. Colloques INRA, 77, 93- 109.
[11] Parks, G.E., Dietrich, M.A., Schumaker, K.S. 2002. Increased vacuolar Na+/H+ exchange activity in Salicornia bigelovii Torr. in response to NaCl. Journal of Experimental Botany 53: 1055– 1065.
[12] Peoples M.B., Herridge D.F., Ladha J.K. 1995. Biological nitrogen fixation: an efficient source of nitrogen for sustainable agricultural production? Plant and Soil 174: 3–28.
[13] Pauwels, J.M., Van Rust, E., Verloo, M., Mvoudo, Z.E. 1992. Manuel de laboratoire de pédologie: Méthodes d’analyses des sols et des plantes. Publications Agricole. 28: 1992. pp 265.
[14] Rozema, J., Flowers, T. 2008. Crops for a salinized world. Science: 322, 1478– 1480.
[15] Rozema, J., Schat, H. 2013. Salt tolerance of halophytes, research questions reviewed in the perspective of saline agriculture. Environmental and Experimental Botany 92: 83- 95.
[16] Sullivan, P. 2003. Overview of cover crops and green manures. ATTRA. Available at
[17] Velagaleti, R.R., Marsh, S. 1989. Influence of host cultivars and Bradyrhizobiumstrains on growth and symbiotic performance of soybean under salt stress. Plant and Soil 119: 133– 138.
[18] Zahran, H.H. 1999. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiology and Molecular Biology Review 63: 968–989.

Cite this Article: Show All (MLA | APA | Chicago | Harvard | IEEE | Bibtex)

Total View: 50 Downloads: 7 Page No: 3237-3241