Productive and Reproductive Traits of Sheep Fed Acacia saligna Leaves-Based Diets

Productive and Reproductive Traits of Sheep Fed Acacia saligna Leaves-Based Diets ( Vol-2,Issue-6,November - December 2017 )

Author: Sobhy M.A. Sallam, Mohamed N. El-Gendy, Mohamed M. Anwar, Wael G. Fahmy, Samir Z. El-Zarkouny, Nesrin M. Hashem, Adel N. M. Nour El-Din, Marwa F.A. Attia, El-Saeed A. El-wakeel, Moustafa M. Zeitoun

ijeab doi crossref DOI: 10.22161/ijeab/2.6.9

Keyword: Feed additives, digestibility, rumen fermentation, blood metabolites, prolificacy.

Abstract: Investigating effects of partial (50%) or total (100%) substitution of clover hay by tannins-rich plant (Acacia saligna) on productive and reproductive performance of ewe lambs was the main goal of this study. Two experiments were conducted: first focusing on digestibility and N balance using 9 Barky rams (live body weight, 43 ± 2.5 kg) where animals were randomly divided into 3 groups (n = 3); control (C), 50% Acacia (AS50%) and 100% Acacia (AS100%); second focusing on productive and reproductive performance of ewe-lambs (n=18) where animals were divided into three groups (n=6); C, AS50% and AS100%. This experiment started 2 months before mating and continued till weaning. Dry matter intake decreased (P<0.05) linearly due with treatment. The digestion coefficients of dry matter (DM), organic matter (OM), crude protein (CP), neutral detergent fiber (NDF) and acid detergent fiber (ADF) were lower (P<0.05) in treated than C. The nitrogen intake and urinary nitrogen were reduced (P<0.05) by treatment, while fecal nitrogen increased (P<0.0%) with treatment. No change was found in conception rates among the three groups whereas fertility rates and lambing rates were higher in the treated compared to the control. AS100% reduced (P<0.05) total protein and blood urea nitrogen (BUN) compared to other groups. No differences in progesterone concentration were found among groups. AS50% resulted in higher (P<0.05) milk yield than other groups. Treatment decreased (P<0.05) milk fat percentage, whereas didn’t change protein and lactose. Therefore, partial replacement of acacia leaves in sheep diets could be beneficial for productive and reproductive performance.


[1] Makkar, H.P.S. (2005). Use of nuclear and related techniques to develop simple tannin assays for predicting and improving the safety and efficiency of feeding ruminants on tanniniferous tree foliage: Achievements, result implications, and future research. Anim. Feed Sci. Technol. 122, 3-12.
[2] Wang, Y., Berg, B.P., Barbieri, L.R., Veira, D.M., McAllister, T.A. (2006). Comparison of alfalfa and mixed alfalfa-sainfoin pastures for grazing cattle: Effects on incidence of bloat, ruminal fermentation, and feed intake. Can. J. Anim. Sci. 86, 383-392.
[3] Waghorn, G.C. (2008). Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production-Progress and challenges. Anim. Feed Sci. Technol. 147, 116-139.
[4] Kumara Mahipala, M.B.P., Krebs, G.L., McCafferty, P., Gunaratne, L.H.P. (2009). Chemical composition, biological effects of tannin and in vitro nutritive value of selected browse species grown in the West Australian Mediterranean environment. Anim. Feed Sci. Technol. 153, 203-215.
[5] Bunglavan, S.J., Dutta, N. (2013). Use of tannins as organic protectants of proteins in digestion of ruminants. J. Livest. Sci. 4, 67-77.
[6] NRC (2007). Nutrient Requirements of Domestic Animals: nutrient requirements of sheep. National Academy of Science, Washington, DC.
[7] AOAC (2006). Official Methods of Analysis, Arlington, VA, USA.
[8] Williams, J., Anderson, D.C., Kress, D.D. (1979). Milk production in Herford cattle. I. Effects of separation internal on weigh-suckle weigh milk production estimates. J. Anim. Sci. 49, 1438-1442.
[9] Van Soest, P.J., Robertson, J.B., Lewis, B.A. (1991). Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583-3597.
[10] Preston, T.R. (1995). Biological and chemical analytical methods. In: T.R. Preston (Ed.) Tropical Animal Feeding: A Manual for Research Workers. FAO, Rome, pp:191-264 (Chap. 9).
[11] Warner, A.C.I. (1964). Production of volatile fatty acids in the rumen. Methods of measurements. Nutr. Abs. Rev. 34, 339.
[12] Makkar, H.P.S. (2003). Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Rum. Res. 49, 241-256.
[13] Makkar, H.P.S., Blummel, M., Borowy, N.K., Becker, K. (1993). Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. J. Sci. Food Agric. 61, 161-165.
[14] SAS (2002). Statistical Analysis System, Version 9.1. SAS Institute, Cary, NC, USA.
[15] Hervás, G., Frutos, P., Giráldez, F.J., Mantecón, A.R., Álvarez del Pino, M.C. (2003). Effect of different doses of quebracho tannins extract on rumen fermentation in ewes. Anim. Feed Sci. Technol. 109, 65-78.
[16] Waghorn, G.C., Shelton, I.D., McNabb, W.C., McCutcheon, S.N. (1994a). Effects of condensed tannins in Lotus pedunculatus on its nutritive value for sheep. 2. Nitrogenous aspects. J. Agric. Sci. (Camb.) 123, 109-119.
[17] Kumar, R., Vaithiyanathas, S. (1990). Occurrence, nutritional significance and effect on animal productivity of tannins in tree leaves. Anim. Feed Sci. Technol. 30, 21-38.
[18] Mueller-Harvey, I. (2006). Unraveling the conundrum of tannins in animal nutrition and health. J. Sci. Food Agric. 86, 2010-2037.
[19] Makkar, H.P.S., Singh, B., Dawra, R.K. (1988) Effect of tannin-rich oak (Quercus incana) on various microbial enzyme activities of the bovine rumen. Brit. J. Nutr. 60, 287-296.
[20] Muhammed, S., Stewart, C.S., Acamovic, T. (1994) Effects of tannic acid on cellulose degradation, adhesion and enzymatic activity of rumen microorganisms. Proc. Soc. Nutr. Physiol. 3, 25-30.
[21] McSweeney, C.S., Palmer, B., McNeill, D.M., Krause, D.O. (2001). Microbial interactions with tannins nutritional consequences for ruminants. Anim. Feed Sci. Technol. 91, 83-93.
[22] Degen, A.A., Blanke, A., Becker, K., Kaman, M., Benjamin, R.W., Makkar, H.P.S. (1997). The nutritive value of Acacia saligna and Acacia Salicinea for goats and sheep. J. Anim. Sci. 64, 253-259.
[23] Beauchemin, K.A., Kreuzer, M., O’Mara, F., McAllister, T.A. (2008). Nutritional management for enteric methane abatement: a review. Aust. J. Exp. Agric. 48, 21-27.
[24] Misselbrook, T.H., Powell, J.M., Broderick, G.A., Grabber, J.H. (2005). Dietary manipulation in dairy cattle: Laboratory experiments to assess the influence on ammonia emissions. J. Dairy Sci. 88, 1765-1777.
[25] Powell, J.M., Broderick, G.A., Grabber, J.H. and Hymes-Fecht, U.C. (2009) Technical note: Effects of forage protein-binding polyphenols on chemistry of dairy excreta. J. Dairy Sci. 92, 1765-1769.
[26] Scharenberg, A., Arrigo, Y., Gutzwiller, A., Soliva, C.R., Wyss, U. Kreuzer, M., Dohme, F. (2007). Palatability in sheep and in vitro nutritional value of dried and ensiled sainfoin (Onobrychis viciifolia) birdsfoot trefoil (Lotus corniculatus), and chicory (Cichorium intybus). Arch. Anim. Nutr. 61, 481-496.
[27] Theodoridou, K., Aufrère, J., Andueza, D., Pourrat, J., Le Morvan, A., Stringano, E., Mueller-Harvey, I., Baumont, R. (2010). Effects of condensed tannins in fresh sainfoin (Onobrychis viciifolia) on in vivo and in situ digestion in sheep. Anim. Feed Sci. Technol. 160, 23-38.
[28] Patra, A.K., Saxena, J. (2011). Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J. Sci. Food Agric. 91, 24-37.
[29] Min, B.R., Attwood, G.T., McNabb, W.C., Barry, T.N. (2001). Effect of condensed tannins on proteolytic bacterial populations in the rumen and on nitrogen flow to the abomasum of sheep. J. Anim. Sci. 79, 163 (Abstr.).
[30] Downing, J.A., Joss, J., Scaramuzzi, R.J. (1995). A mixture of the branched chain amino acids leucine, isoleucine and valine increases ovulation rate in ewes when infused during the late luteal phase of the estrus cycle: an effect that may be mediated by insulin. J. Endocrinol. 145, 315-323.
[31] Bellows, R.A., Pope, A.L., Meyer, R.K., Chapman, A.B., Casida, L.E. (1963). Physiological mechanisms in nutritionally induced differences in ovarian activity of mature ewes. J. Anim. Sci. 22, 93-108.
[32] Downing, J.A., Scaramuzzi, R.J. (1991). Nutrient effects on ovulation rate, ovarian function and the secretion of gonadotrophic and metabolic hormones. J. Reprod. Fert. 43, 209-227.
[33] Smith, J.F. (1988). Influence of nutrition on ovulation rate in the ewe. Aust. J. Biol. Sci. 41, 27-36.
[34] El-Zarkouny, S.Z., Ghobashy, H., Nour El-Din, A.N.M., Abdel-Gauad, E.I., Hassan, G.A. (2007). Lambing and embryonic mortality rates in Awassi and Barky ewes and their crosses throughout three different mating seasons in the west coastal region of Egypt. Alex. J. Agric. Res. 52, 15-24.
[35] Butler, W.R. (1998). Review: Effect of protein nutrition on ovarian and uterine physiology in dairy cattle. J. Dairy Sci. 81, 2533-2539.
[36] Grainger, C., Clarke, T., Auldist, M.J., Beauchemin, K.A., McGinn, S.M., Waghorn, G.C. (2009). Potential use of Acacia mearnsii condensed tannins to reduce methane emissions and nitrogen excretion from grazing dairy cows. J. Anim. Sci. (Camb.) 89, 241-251.
[37] Molle, G., Decandia, M., Giovanetti, V., Cabiddu, A., Fois, N., Sitzia, M. (2009). Responses to condensed tannins of flowering sulla (Hedysarum coronarium L.) grazed by dairy sheep. Part 1: Effects on feeding behavior, intake, diet digestibility and performance. Livest. Sci. 123, 138-146.
[38] Wang, Y., Douglas, G.B., Waghorn, G.C., Barry, T.N., Foote, A.G. (1996). The effect of condensed tannins in Lotus corniculatus upon lactation performance in ewes. J. Agric. Sci. (Camb.) 126, 353-362.
[39] Woodward, S.L., Auidist, M.J., Laboyrie, P.J., Jansen, E.B.L. (1999). Effect of Lotus corniculatus and condensed tannin on milk yield and milk composition of dairy cows. Proc. N.Z. Soc. Anim. Prod. 59, 152-155.
[40] Rouissi, H., Atti, N., Mahouachi, M., Rekik, B. (2006). Effect de la complementation azotée sur les performances zootechniques de la chèvre locale. Trop. Culture. 24, 111-114.
[41] Penning, P.D., Orr, R. J., Treacher, T.T. (1988). Responses of lactating ewes offered fresh herbage indoors and when grazing to supplements containing differing protein concentrations. Anim. Prod. 46, 403-415.
[42] Maamouri, O., Atti, N., Kraiem, K., Mahouachi, M. (2011). Effects of concentrate and Acacia cyanophylla foliage supplementation on nitrogen balance and milk production of grazing ewes. Livest. Sci. 139, 264-270.
[43] Ben Salem, H., Atti, N., Priolo, A., Efzaoui, A. N. (2002). Polyethylene glycol in concentrate or feed blocks to deactivate condensed tannins in Acacia cyanophylla Lindl. Foliage. 1-Effects on intake, digestion and growth by Barbarine lambs. J. Anim. Sci. 75, 127-135.
[44] Ben Salem, H., Makkar, H.P.S., Nefzaoui, A., Hassayoun, L., Abidi, S. (2005). Benefit from the association of small amounts of tannin-rich shrub foliage (Acacia cyanophylla Lindl.) with soya bean meal given as supplements to Barbarine sheep fed on oaten hay. Anim. Feed Sci. Technol. 122, 173-186.
[45] Raghuvansi, S. K., Prasad, R., Mishra, A.S., Chaturvedi, O.H., Tripathi, M.K., Misra, A.K., Saraswat, B.L., Jakhmola, R.C. (2007). Effect of inclusion of tree leaves in feed on nutrient utilization and rumen fermentation in sheep. Bioresour. Technol. 98, 511-517.
[46] Joy, P.P., Thomas, J., Mathew, S., Skaria, B.P. (2001). Medicinal plants. In: Bose, T.K., Kabir, J., Das, P., Joy, P.P. (Eds.), Tropical Horticulture. Naya Prokash, Calcutta, India, pp. 449-632.
[47] Mohammed, N., Ajisaka, N., Lila, Z.A., Hara, K., Mikuni, K., Kanda, S. Itabashi, H. (2004). Effect of Japanese horseradish oil on methane production and ruminal fermentation in vitro and in steers. J. Anim. Sci. 82, 1839-1846.
[48] Devant, M., Anglada, A., Bach, A. (2007). Effects of plant extract supplementation on rumen fermentation and metabolism in young Holstein bulls consuming high levels of concentrate. Anim. Feed Sci. Technol. 137, 46-57.
[49] Waghorn, G.C., Shelton, I.D., McNabb, W.C. (1994b). Effects of condensed tannins in Lotus pedunculatus on its nutritive value for sheep. 1. Non-nitrogenous aspects. J. Agric. Sci. 123, 99-107.
[50] Jones, G.A., Jakober, K.D., Bae, H.D., McAllister, T.A., Cheng, K.J. (1993). Some interactions between condensed tannins of forage legumes, bovine serum albumin and five strains of proteolytic rumen bacteria. Proceedings of the World Conference on Animal Production, Edmonton, Canada 36, 68-69.
[51] Turner, K.E., Wildeus, S., Collins, J.R. (2005). Intake, performance, and blood parameters in young goats offered high forage diets of lespedeza or alfalfa hay. Small Rum. Res. 59, 15-23.
[52] Moore, D.A., Terrill, T.H., Kouakou, B., Shaik, S.A., Mosjidis, J.A., Miller, J.E., Vanguru, M. Kannan, G., Burke, J.M. (2008). The effects of feeding Sericea lespedeza hay on growth rate of goats naturally infected with gastrointestinal nematodes. J. Anim. Sci. 86, 2328-2337.
[53] Solaiman, S., Thomas, J., Dupre, Y., Min, B.R., Gurung, N., Terrill, T.H., Haenlein, G.F.W. (2010). Effect of feeding sericea lespedeza (Lespedeza cuneata) on growth performance, blood metabolites, and carcass characteristics of Kiko crossbred male kids. Small Rum. Res. 93, 149-156.
[54] Silanikove, N., Gilboa, N., Perevolotsky, A., Nitsan, Z. (1996). Goats fed tannin-containing leaves do not exhibit toxic syndromes. Small Rum. Res. 21, 195-201.

Cite this Article: Show All (MLA | APA | Chicago | Harvard | IEEE | Bibtex)

Total View: 170 Downloads: 52 Page No: 2829-2840