Role of Trichoderma and Sinorhizobium Strains for Improving Growth and Nutritional Status of Alfalfa under Cd Stress

Role of Trichoderma and Sinorhizobium Strains for Improving Growth and Nutritional Status of Alfalfa under Cd Stress ( Vol-3,Issue-1,January - February 2018 )

Author: Dr. Najia Shwerif

ijeab doi crossref DOI: 10.22161/ijeab/3.1.6

Keyword: Alfalfa (Medicago sativa), heavy metals, Sinorhizobium, Trichoderma fungi.

Abstract: The plant rhizosphere is a major soil ecological environment for plant- microbe interactions involving colonization of different microorganisms in and around the roots of the growing plant. Plants can be used in the remediation of soils contaminated with heavy metals. The objective of this study was determine the relationship between the effect of Cd on the symbiotic model of Sinorhizobium meliloti – Medicago sativa and the application of Trichoderma sp. on the nutritional status as well as biochemical characterization of the sandy brown forest soil. The effects of biofertilizer Sinorhizobium and coinoculants Trichoderma strains on growth, chlorophyll and N, P and K content of alfalfa growing in soil polluted by cadmium were investigated. The results indicate that the presence of the saprobe fungi Trichoderma harzianum further enhanced shoot dry weight, N, P and K content of Sinorhizobium meliloti-alfalfa symbiotic model. The co-inoculation of alfalfa with T. harzianum was more effective for Cd uptake. The effects of the bio-multiple inoculants on the growth of alfalfa were stimulated the colonization of Sinorhizobium strains in the rhizosphere, promoted the nodulation potential and increased the dry organic matter. Sinorhizobium meliloti interacts with alfalfa as a model for rhizobioremediation and Trichoderma strains interact with this model as nodule promotors as well as a partner in the process of cleaning the plant rhizosphere from cadmium metal.

References:

[1] Adriano D.C. (1986). Trace Elements in the Terrestrial Environment. Springer-Verlag, New York.
[2] Aleem A., Isar J. and Malik A. (2003). Impact of long-term application of industrial waste water on the emergence of resistance traits in Azotobacter chroococcum isolated from rhizosperic soil. Bioresour. Technol,( 86) pp 7-13.
[3] Alfredo P., Pilar B., Engracia M., Francisco C., Petra J and Michael S. (2006). Microbial community structure and function in a soil contaminated by heavy metals: effects of plant growth and different amendments. J. Soil Biology and Biochemistry, (2) pp 327-341.
[4] Altomare C., Norvell W. A., Björkman T and Harman G. E. (1999). Solubilisation of phosphates and micronutrients by the plant-growth promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl. Environ. Microbial.,( 65) pp 2926-2933.
[5] Anderson T. A and Coat J. R. (1994). Bioremediation though Rhizosphere technology. American Chemical Society, Washington, DC.
[6] Askew D and Laing M. D. (1993). An adapted selective medium for the qualitative isolation of Trichoderma species. Plant Pathol.,( 42) pp 686- 690.
[7] Baker, A.J.M. (1994). Heavy metal accumulation and tolerance in British populations of the metallophytes Thlaspi cearulescens J. and C. Presl. Brasicaceae, New Phytol,( 127), pp 61-68.
[8] Bayoumi H. E. A. F. (1987). Pesticide and antibiotic sensitivity of Rhizobium leguminosarum strains. University of doctor's thesis. Gödöllȍ University of Agricultural Sciences. Gödöllȍ, Hungary. P 93.
[9] Bayoumi H. E. A. F., Biró B and Kecskés M. (1995a). Some of environmental factors influencing the survival of Rhizobium leguminosarum bv. Viceae. Acta Biol. Hung. (46) pp7-30.
[10] Bayoumi H. E. A. F., Biró B and Kecskés M. (1995b). Effect of some of environmental factors on Rhizobium and Bradyrhizobium strains. Acta Microbiol. Immunol. Hung., (42) pp 61-69.
[11] Bhanoori M and Venkateswerlu G. (2000). In vivo chitin –cadmium complexation in cell wall of Neurospora crassa. Biochim. Biophys. Acta., (1519) pp 21-28.
[12] Boularbah A., Schwartz C., Bitton G., Aboudrar W., Ouhammou A and Morel J. L. (2006). Heavy metal contamination from mining sites in South Morocco: 2. Assessment of metal accumulation and toxicity in plants. Chemosphere,( 63) pp 811-817.
[13] Brooks R. R. (1998). Geobotany and hyperaccumulators. In: Plants those hyperaccumulate heavy metals. R.R. Brook(ed), CAB Internet. Wallingford, UK, PP 55-94.
[14] Burris R. H. (1974). Methodology. In The Biology of Nitrogen Fixation, pp. 9-33. Edited by A. Quispel. Amsterdam, New York: North Holland Publishing Co.
[15] Cervantes C., Corona G. F (1994). Copper resistance mechanisms in bacteria and fungi. FEMS Microbiol. Rev. (14) pp 121–138.
[16] Choudhury R. and Srivastava S. (2001). Mechanism of zinc resistance in Pseudomonas Putida strain S4. World J. Microbiol. Biotechnol., (17) pp 149-153.
[17] Cunningham S. D., Berti W. R. and Huang J. W.(1995): phytoremediation of contaminated soils. Tibitech., (13) pp 393-397.
[18] Franco, A. A and Vincent J. M.( 1976) . Competition amongst rhizobial strains for the colonization and nodulation of two tropical legumes. Plant Soil, (45) pp 27-48.
[19] Gadd G. M and White C. (1993). Microbial treatment of metal pollution- a working biotechnology. TIBTECH, (11) pp 353-360.
[20] Gavrilesea M. (2004). Removal of heavy metal from the environment by biosorption . Life Sci. (4) pp 219 -232.
[21] Giller K. E., Nussbaum R., Chaudri A. M and McGrath S. P. (1993). Rhizobium meliloti is less sensitive to heavy-metal contamination in soil than R. leguminosarum bv. trifolii or R. loti, soil Biol. Biochem., (25) pp273-278.
[22] Gray K. M., Pearson J. P., Downie J. A., Bobze B. E and Greeberg E. P. (1996). Cell-to-cell signaling in the symbiotic nitrogen-fixing bacterium Rhizobium leguminosarum: autoinduction of a stationary phase and rhizosphere-expressed genes J. Bacteriol., (178) pp 372-376.
[23] Grayston S. J and Campbell C. D. (1996). Functional biodiversity of microbial communities in the rhizospheres of hybrid larch (Larix eurolepis) and sitka spruce (Picea sitchensis). Tree physiol., (16) pp 1031-1038.
[24] Grayston S. J., Vaughan D and Jones D. (1996). Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl. Soil Ecol., (5) pp 29-56.
[25] Grayston S. J., Wang S., Campbell C. D and Edwards A. C. (1998). Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol. And Biochem., (30) pp 112-121.
[26] Gupta R., Ahuja P., Khan S., Saxena R. K and Mohapatra H. (2000). Microbial biosorbents: meeting challenges of heavy metal pollution in aqueous solutions. Curr. Sci., (78) pp 976- 983.
[27] Harman G. E., Howell C. R., Viterbo A., Chet I and Lorito M. (2004). Trichoderma species opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol., (2) pp 43-56.
[28] Hiltner L. (1904). Uber neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderden berucksichtigung und Brache. Arb. Dtsch. Landwirtsch. Gesellschaft (98 ) pp 59–78.
[29] Jaiswal R. and Malik A. (2000). Metal resistance in Pseudomonas strain isolated from soil treatment with industrial wastewater. World J. Microbiol. Biotech, (16) pp 177-182.
[30] Jansen R. H and Strijdom B. W. (1982). Competitive abilities of Rhizobiurn meliloti strains considerd to have potential as inoculants. Appl. Environ. Microbiol. (44) pp98-106.
[31] Jordan D. C and Garrard, E. H. (1951). Studies on legume root nodule bacteria. I. Detection of effective and ineffective strains. Can. J. Bot., (29) pp 360-372.
[32] Kabata-Pendias A. (1992).Trace metals in soils in Poland-occurrence and behaviour, Soil Sci., (140) pp 53-70.
[33] Kapulnik Y., Okon Y and Henis Y. (1985). Channges in root morphology of wheat caused by Azospirillum inoculation. Can. J. Microbiol., (31) pp 881-887.
[34] Khan A. G. (2003). Vetiver grass as an ideal phytosymbiont for Glomalian fungi for ecological restoration of derelict land. In: Proceedings of the third international conference on vetiver and exhibition: vetiver and water. China Agricultural Press, Beijing, pp 466-474.
[35] Kirk J. L., Klironomos J. N., Lee H and Trevors J. T. (2005). The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Environ. Poll. (133) pp 455-465.
[36] Kleczowska J., Nutman P. S., Skinner F. A and Vincent J. M. (1968). The identification and classification of Rhizobium. In: B.W.M. Gibbs, D. A. Shapton (eds). Identification methods for microbiologists, part B. Acad. Press, N. Y and Lond., pp 51-65.
[37] Kleifeld O and Chet I. (1992). Trichoderma harzianum interaction with plants and effect on growth-respone. Plant and soil,( 144) pp 267-272.
[38] Kozdroj J and Van Elsas J. D. (2000). Response of the bacterial community to root exudates in soil polluted with heavy metals assessed by molecular and cultural approaches. Soil Biol. Biochem., (32) pp 1405- 1417.
[39] Lichtenthaler H. K. (1987). Chlorophyll Fluorescence signatures of leaves during the autumnal chlorophyll breakdown. J. Plant Physiol., (131) pp 101-110.
[40] Linger P., Mussing J., Fischer H and Kobert J. (2002). Industrial hemp (Cannabis sativa L.) growing on heavy metal contaminated soil: fibre quality and phytoremediation potential. Ind Crops Prod., (16) pp33-42.
[41] Mikanova O., Kubat J., Mikhailovskaya N., Voros I and Biro B. (2001). Influence of heavy metal pollution on some soil-biological parameters in the alluvium of the Litavka River. Rostlinna Vyroba, (47) pp 117-122.
[42] Mingorance M. D. (2002). Focused microwave-assisted digestion of vegetal materials for the determination of essential mineral nutrients. Anal. Bioanal. Chem., (373) pp153-158.
[43] Mordukhava E. A., Skvortsova N. P., Kochetkov V. V., Dubeikovskii A. N and Boronin A. M. (1991). Synthesis of the phytohormone indole-3-acetic acid by rhizosphere bacteria of the genus Pseudomonas. Mikrobiol., (60) pp 494-500.
[44] Morel, J. L., Bitton G., Schwartz. C and Schiavon M. (1997). Bioremdiation of soils and waters contaminated with micropollutants, with role of plants. In Ecotoxicology, Responses, Biomarkers and Risk Assessment. J. J. Zelikoff, J. M. Lynch, J. Shippers, OECD, pp 1-38.
[45] Morrissey J. P., Dow J. M., Mark G. L and O'Gara F. (2004). Are microbes at the root of a solution to world food production? Rational exploitation of interactions between microbes and plants can help to transform agriculture. EMBO reports, (5) pp 922-926.
[46] Naár Z and Biró B. (2006). Species composition of Trichoderma fungi affected by Cd, Ni and Zn in calcareous chernozem soil. Agrochemistry and soil, (55) pp 261- 270.
[47] Naár Z., Román F and Füzy A. (2002). Correlation between indigenous mycoparasitic and symbiotic beneficial fungi at heavy metal stress. Agrochemistry and soil, (51) pp 115-122.
[48] Nies D. H. (1999). Microbial heavy-metal resistance. Appl. Microbial. Biochem., (51) pp 730-750.
[49] Pálagyi A., Bayoumi H. E. A. F., Tóth Nikolett and Kecskés M. (2004). Toxicity effect of Cd2+, Cu2+ and Pb2+ ion on nodulation potential of Sinorhizobium meliloti on Medicago sativa root in the presence of fluorescent Pseudomonas strain. Proceeding of the VII. International Ph.D. Students Conference. RNDr. University of South Bohemia, Faculty of Agriculture, Czech Republic. pp 55-60.
[50] Peralta-Videa J. R., Gardea- Torresdey J. L., Gomez E., Tiemann K. J., Parsons J. G and Rosa G. (2002). Potential of alfalfa plant to phytoremediate individually contaminated montmorillonite soils with Cd (II), Cr(VI), Cu(II), Ni(II) and Zn(II). Bull. Environ. Contam. Toxicol., (69) pp 74-81.
[51] Reynders L and Vlassik K. (1982). Use of Azospirillum brasilense as biofertilizer in intensive wheat cropping. Plant and soil,( 66) pp 217-223.
[52] Robleto E. A., Kmiecik K., Oplinger E. S., Nienhuis J and Triplett E. W. (1998). Trifolitoxin production increases nodulation competitiveness of Rhizobium etli CE3 under agricultureal conditions. Appl. Environ. Microbiol.,( 64)pp 2630-2633.
[53] Sarig S., Blum A and Okon Y. (1988). Improvement of water status and yield of field-grown sorghum (Sorghum bicolor) by inoculation with Azospirillum brasilense. J. Agric. Sci., (110) pp 271- 277.
[54] Say R., Denizil A and Arica Y. (2001). Biosorption of cadmium (II), lead (II) and copper (II) with filamentous fungus Phenarochaete chrysosporium. Bioresourc. Technol., (76) pp 67-70.
[55] Sokal R and Rohlf F. J. (1981). Biometry: The principles and Practice of Statistics in Biological Research, Freeman and Co., New York.
[56] Somasegaran, P. and Hoben, H.J. (1994). Handbook of Rhizobia. Methods in Legume-Rhizobium Technology. Springer-Verlag, New York, NY, pp 450.
[57] Spain A. (2003). Implication of microbial heavy metal tolerance in the environment, Rev. Under. Grad. Res. (2) pp1-6.
[58] Smith S.R (1997). Rhizobium in soils contaminated with copper and zinc following the long-term application of sewage sludge and other organic wastes. Soil Biology and Biochemistry (29) pp1475-1489.
[59] Stratton M. L., Good G. L and Barker A. V. (2001). The effects of nitrogen source and concentration on the growth and mineral composition of privet. J . Plant Nutr, (24) pp 1745-1772.
[60] Sullivan J. T and Ronson C. W. (1998): Evolution of rhizobia by acquisition of a 500kb symbiosis island that integrates into phe-tRNA gene. Proc. Natl. Acad. Sci. USA.,( 95) pp 5145- 5149.
[61] Ta T. C. and Faris M. A. (1988). Environmental effects on the fixation and transfer of nitrogen from alfalfa to associated timothy. Plant and Soil (107) pp 25–30.
[62] Triplett E. W and Sadowsky M. J., (1992). Genetics of competition for nodulation of legumes. Annu. Rev. Microbiol., (46) pp 399-428.
[63] Vander Lelie D. (1998). Biological interactions: the role of soil bacteria in the bioremediation of heavy metal polluted soils. In Metal contaminated soils: in situ inactivation and phytorestoration. J Vangronsveld, S. D. Cunningham (eds), Springer and RG Landes Co., Austin, TX, USA, PP31-50.
[64] Vincent, J. M. (1970). A Manual for the Practical Study of Root Nodule Bacteria. Oxford: Blackwell Scientific
[65] Wang Z. W., Shan X. Q and Zhang S. Z.(2002). Comparison between fractionation and bioavailability of trace elements in rhizosphere and bulk soils. Chemosphere (46) pp. 1163- 1171.

Total View: 58 Downloads: 31 Page No: 033-048


Cite this Article:

MLA

Dr. Najia Shwerif et al."Role of Trichoderma and Sinorhizobium Strains for Improving Growth and Nutritional Status of Alfalfa under Cd Stress". International Journal of Environment Agriculture and Biotechnology(ISSN: 2456-1878),vol 3, no. 1, 2018, pp.033-048 AI Publications doi:10.22161/ijeab/3.1.6

APA

Dr. Najia Shwerif, P.(2018).Role of Trichoderma and Sinorhizobium Strains for Improving Growth and Nutritional Status of Alfalfa under Cd Stress. International Journal of Environment Agriculture and Biotechnology(ISSN: 2456-1878).3(1), 033-048.10.22161/ijeab/3.1.6

Chicago

Dr. Najia Shwerif, P.(2018).Role of Trichoderma and Sinorhizobium Strains for Improving Growth and Nutritional Status of Alfalfa under Cd Stress. International Journal of Environment Agriculture and Biotechnology(ISSN: 2456-1878).3(1), pp.033-048.

Harvard

Dr. Najia Shwerif. 2018."Role of Trichoderma and Sinorhizobium Strains for Improving Growth and Nutritional Status of Alfalfa under Cd Stress". International Journal of Environment Agriculture and Biotechnology(ISSN: 2456-1878).3(1):033-048.Doi:10.22161/ijeab/3.1.6

IEEE

Dr. Najia Shwerif."Role of Trichoderma and Sinorhizobium Strains for Improving Growth and Nutritional Status of Alfalfa under Cd Stress", International Journal of Environment Agriculture and Biotechnology,vol.3,no. 1, pp.033-048,2018.

Bibtex

@article { dr.najiashwerif2018role,
title={Role of Trichoderma and Sinorhizobium Strains for Improving Growth and Nutritional Status of Alfalfa under Cd Stress},
author={Dr. Najia Shwerif , R},
journal={International Journal of Environment Agriculture and Biotechnology},
volume={3},
year= {2018} ,
}