Insecticidal activities of diketopiperazines of Nomuraea rileyi entomopathogenic fungus

Insecticidal activities of diketopiperazines of Nomuraea rileyi entomopathogenic fungus ( Vol-2,Issue-4,July - August 2017 )

Author: Karenina Marcinkevicius, Analia Salvatore, Alicia Bardon, Elena Cartagena,Mario Arena, Nancy Vera

ijeab doi crossref DOI: 10.22161/ijeab/2.4.18

Keyword: antifeedant, entomopathogenic fungi, insect pests, oviposition deterrence, repellency.

Abstract: Entomopathogenic fungi are fungal organisms extensively used in various parts of the world as biopesticides against insect pests that cause important economic damage. Various secondary metabolites produced by these fungi have many potential biological activities. The present study was undertaken to evaluate the insecticidal activity of extracts and pure compounds from Nomuraea rileyi (Farlow) Samson entomopathogenic fungi against Spodoptera frugiperda Smith (Lepidoptera), Ceratitis capitata Wiedemann (Diptera) and Tribolium castaneum Herbst (Coleoptera), three insect pests that generate serious economic losses in the northwest of Argentina. Diketopiperazines were extracted from the culture free supernatant of the media with ethyl acetate. Antifeedant properties were detected in all extracts under dietary choice conditions (300 ug/ g of diet). The maximum antifeedant activity was noted in cycles (Pro-Val) (86.02) and cycle (Pro-Phe) (73.47), while the rest of the extracts and metabolites exhibited varying degrees of moderate or less toxic effects. The maximum oviposition deterrence against C. capitata (55.86%) was recorded with cycle (Pro-Phe) at a 50 µm/cm2 dose. Culture medium extracts supplemented with insect remains and all pure compounds showed repellent action against T. castaneum. The main repellency was observed in phenylacetic acid and cycle (Pro-Val) with RI values of 42 and 41% respectively. The present study would suggest the possible utilization of entomopathogenic fungal metabolites as an effective agent for controlling insect pests that cause important economic losses.

References:

[1] Adamczeski, M., Reed, A.R., Crews, P., 1995. New and known diketopiperazines from the Caribbean sponge, Calyx cf. podatypa. J. Nat. Prod. 58, 201– 208.
[2] Asaff, A., Reyes-Vidal, Y., López, E., López, M., 2002. Guerra entre Insectos y microorganismos: una estrategia natural para el control de plagas. Avance y Perspectiva 21, 291−295.
[3] Bull, S.D., Davies, S.G., Parkin, R.M., Sanchez-Sancho, F.F., 1998. The biosynthetic origin of diketopiperazines derived from D-proline. J. Chem. Soc. 1, 2313-2320.
[4] Cartagena, E., Marcinkevicius, K., Luciardi, C., Rodríguez, G., Bardón, A., Arena, M.E., 2014. Activity of a novel compound produced by Aspergillus parasiticus in the presence of red flour beetle Tribolium castaneum against Pseudomonas aeruginosa and coleopteran insects. J Pest Sci 87, 521-530.
[5] Castillo, M.A., Moya, P., Hernandez, E., Primo-Yufera, E., 2000. Susceptibility of Ceratitis capitata Wiedemann (Diptera: Tephritidae) to entomopatogenic fungi and their extracts. Biological Control 19: 274-282.
[6] CN102669110(2012) Institute of Oceanology Chinese Academy of Sciences. Chinese Patent N| CN102669110. The application of an indoly diketopiperazine compound. China Patent and Trademark Office, Shangai, China.
[7] CN102675293(2012) Institute of Oceanology Chinese Academy of Sciences. Chinese Patent N° CN102675293. An indolyl diketopiperazine like derivative, its preparation method and application. China Patent and Trademark Office, Shangai, China.
[8] De Guzman, F.S., Dowd, P.F., Gloer, J.B., Wicklow, D.T., 1993. Cycloechinulin antiinsectan metabolite US5196420 A
[9] Devi, U., Mohan, C., Padmavath, J., Ramesh, K., 2003. Susceptibility to Fungi of Cotton Bollworms before and after a natural epizootic of the Entomopathogenic Fungus Nomuraea rileyi (Hyphomycetes). Biocontrol Sci Technol 13, 367-371.
[10] Dimbi, S., Maniana, N.K., Lux, S.A., Ekesi, S., Mueke, J.K., 2003. Pathogenicity of Metarhizium anisopliae (Metsch.) Sorokin and Beauveria bassiana (Balsamo) Vuillemin, to three adult fruit fly species: Ceratitis capitata (Wiedemann), C. rosa var. fasciventris Karsch and C. cosyra (Walker) (Diptera: Tephritidae). Mycopathologia 156, 375-382.
[11] Edelstein, J., Lecuona, R., Trumper, E., 2004. Selection of culture media and in vitro assessment of temperature dependent development of Nomuraea rileyi. Neotropical Entomology 33, 737-742.
[12] Ekesi, S., Maniania, N.K., Lux, S.A. 2002. Mortality in three African tephritid fruit fly puparia and adults caused by the entomopathogenic fungi, Metarhizium anisopliae and Beauveria bassiana. Biocontrol Science and Technology 12, 7-17.
[13] Ekesi, S., Maniania, N.K., Mohamed, S.A., Lux, S.A., 2005. Effect of soil application of different formulations of Metarhizium anisopliae on African tephritid fruit flies and their associated endoparasitoids. Biological Control 35, 83-91.
[14] Falchi, G., Marche, M.G., Mura, M.E., Ruiu, L., 2015. Hydrophobins from aerial conidia of Beauveria bassiana interfere with Ceratitis capitata oviposition behavior. Biological Control 81: 37–43.
[15] Farrar RR, Barbour JD, Kenedy GG (1989) Quantifying food consumption and growth in insects. Annal. Entomol. Soc. Am. 82: 593-598.
[16] Gilliespie, A.T., Claydon, N., 1989. The use of entomogenous fungi for pest control and the role of toxins in pathogenesis. Pesticida Science 27, 203-215.
[17] Gimenez, A.B., Garcia Breijo, J., Rosello, J., Santamarina, M.P., 2000. Investigacion y detección de fúngicos con actividad bactericida, fungicida e insecticida. Departamento de Biologia vegetal: Escuela Universitaria de ingeniería Tecnica Agricola de la Universidad politécnica de Valencia.
[18] Hajek, A.E., Delalibera, I., 2010. Fungal pathogens as classical biological control agents against arthropods. BioControl 55, 147–158.
[19] Haouas D, Flamini G, Ben Halima-Kamel M, Ben Hamouda MH (2010) Feeding perturbation and toxic activity of five Chrysanthemum species crude extracts against Spodoptera littoralis (Boisduval) (Lepidoptera; Noctuidae). Crop Protection 29: 992–997.
[20] Hegedus, D., Khachatourians, G., 1995. Biotechnology Advances 13, 455−490.
[21] Huang, R., Ma, W., Dong, J., Zhou, X., Xu, T., Lee, K.J., Yang, X., Xu, S., Liu, Y., 2010. A New 1,4-Diazepine from South China Sea Marine Sponge Callyspongia Species. Molecules 15, 871-877.
[22] Hummelbrunner, L.A., Isman, M.B., 2001. Acute, sublethal, antifeedant and synergestic effects of monoterpenoid essential oil compounds on the tobacco cutworm Spodoptera litura (Lepidoptera: Noctudiae). Journal of Agricultural and Food Chemistry 49, 715-720.
[23] Ignoffo, C.M., 1981. Nomuraea rileyi as microbial insecticide. In: Burges HD (ed) Microbial control of pests and plant diseases 1970–1980. Academic Press Inc, London, pp 513–538.
[24] Isman, M.B., 2002. Insect antifeedants. Pesticide Outlook 13, 152-157.
[25] Jaronski, S.T., 2010. Ecological factors in the inundative use of fungal entomopathogens. Biocontrol 55, 159–185.
[26] Jeffs, L.B., Khachatourians, G.G. 1997. Toxic properties of Beauveria pigments on erythrocyte membranes. Toxicon 35: 1351–1356.
[27] Khachatourians, G.G., 1996. Biochemistry and molecular biology of entomopathogenic fungi. In The Mycota VI. Human and Animal Relationships, Howard/Miller eds., Springer-Verlag, Berlin pp 331−364.
[28] Kikuchi, H., Miyagawa, Y., Nakamura, K., Sahashi, Y., Inatomi, S., Oshima, Y., 2004. A novel carbon skeletal trichothecane, tenuipesine A, isolated from an entomopathogenic fungus, Paecilomyces tenuipes. Org Lett 6, 4531–4533.
[29] Konstantopoulou, M.A., Mazomenos, B.E., 2005. Evaluation of Beauveria bassiana and B. brongniartii strains and four wild type fungal species against adults of Bactrocera oleae and Ceratitis capitata. Biocontrol 50: 293-305.
[30] Kucera, M. and Samsinakova, A., 1968. Toxins of the entomophagous fungus Beauveria bassiana. J. Inver. Pathol., 12, 316-320.
[31] Kumar, R., Kumar, A., Shekhar Prasa, C., Kishore Dubey, N., Samant, R. 2008. Insecticidal activity Aegle marmelos (L.) Correa essential oil against four stored grain insect pests. Int J Food Saf 10, 39–49
[32] Lacey, L.A., Frutos, R., Kaya, H.K., Vail, P., 2001. Insect pathogens as biological control agents: do they have a future?. Biological Control 21, 230-248.
[33] Lakshmanan, S., Krishnappa, K., Elumalai, K., 2012. Certain plant essential oils against antifeedant activity of Spodoptera litura (Fab.), Helicoverpa armigera (Hub.) and Achaea janata (Linn.) (Lepidoptera: Noctuidae). International Journal of Current Life Sciences 2, 5-11.
[34] Lee, S., Nakajima, I., Ihara, F., Kinoshita, H., Nihira, T., 2005. Cultivation of entomopathogenic fungi for the search of antibacterial compounds. Mycopathologia 160, 321–325
[35] Marannino, P., Santiago-Álvarez, C., de Lillo, E., Quesada-Moraga, E. 2006. A new bioassay method reveals pathogenicity of Metarhizium anisopliae and Beauveria bassiana against early stages of Capnodis tenebrionis (Coleoptera; Buprestidae). Journal of Invertebrate Pathology 93, 210–213.
[36] Michalaki, M.P., Athanassiou, C.G., Steenberg, T., Buchelos, C.T. 2007. Effect of Paecilomyces fumosoroseus (Wise) Brown and Smith (Ascomycota: Hypocreales) alone or in combination with diatomaceous earth against Tribolium confusum Jacquelin du Val (Coleoptera: Tenebrionidae) and Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Biological Control 40: 280–286.
[37] Mitova, M., Tutito, M.L., Infusini, G., Marino, G., De Rosa, S., 2005. Exocellular peptides from antarctic psychrophile Pseudoalteromonas haloplanktis. Marine Biotechnology 7: 523-531.
[38] Mohamed, A.K.A., Nelson, F.R.S., 1984. Toxic effect of Nomuraea rileyi extract on Heliothis spp. J Agric Entomol 1, 349–353.
[39] Morales, P., Cemeli, M., Godoy, F., and Salas, B., 2004. A list of Mediterranean fruit fly, Ceratitis capitata Wiedemann (Diptera: Tephritidae), host plants based on the records of INIACENIAP Museum of Insects of Agricultural Interest. Entomotropica 19: 51-54.
[40] Murúa, G., 2014. Principal plaga de maíz en el NOA: Spodoptera frugiperda. Resumen preparado para el 2do Taller de Insectos en Maíz, 14 pp.
[41] Onofre, S.B., Gonzalez, R.R., Messias, C.L., Azevedo, J.L., de Barros, N.M., 2002. LC 50 of the peptide produced by the entomopathogenic fungus Nomuraea rileyi (Farlow) Samson active against third instar larvae of Anticarsia gemmatalis (Lep.: Noctuidae). Braz Arch Biol Technol 45, 269–275.
[42] Ortu, S., Cocco, A., Dau, R., 2009. Evaluation of the entomopathogenic fungus Beauveria bassiana strain ATCC 74040 for the management of Ceratitis capitata. Bulletin of Insectology 62, 245-252.
[43] Padín, S.B., Fusé, C., Urrutia, M.I., Dal Bello, G.M., 2013. Toxicity and repellency of nine m medicinal plants against Tribolium castaneum in stored wheat. Bull Insectol 66, 45–49.
[44] Prasad, C., 1995. Bioactive Cyclic Dipeptides. Peptides 16, 151-164.
[45] Pascual Villalobos, M., 1998. Repelencia, inhibición del crecimiento y toxicidad de extractos vegetales en larvas de Tribolium castaneum Herbst. (Coleoptera: Tenebrionidae). Boletín de Sanidad Vegetal Plagas 24, 143-154.
[46] Pavunraj, M., Baskar, K., Ignacimuthu, S., 2012. Efficacy of Melochia corchorifolia L. (Sterculiaceae) on feeding behavior of four Lepidoptera pests. International Journal of Agricultural Research 7, 58-68.
[47] Pedras, M.S.C., Yu, Y., Liu, J., Tandron Moya, Y.A., 2005. Metabolites Produced by the Phytopathogenic Fungus Rhizoctonia solani: Isolation, Chemical Structure Determination, Syntheses and Bioactivity. Z. Naturforsch. 60c, 717-722.
[48] Procópio, S., Vendramin, J., Ribeiro, J., Santos, J., 2003. Bioactibidade de diversos pós de origen vegetal em relacáo o Sitophilus seamaiz Mots (Coleoptera: Curculionidae). Ciencia Agrotécnica 27, 1231-1236.
[49] Prompiboon, P., Bhumiratana, A., Ruchirawat, S., Boucias, D.G., Wiwat, C., 2008. Isolation of ergosterol peroxide from Nomuraea rileyi infected larvae of tobacco cutworm. World Journal of Microbiology and Biotechnology 24, 2909-2917.
[50] Quesada-Moraga, E., Vey, A., 2004. Bassiacridin, a protein toxic for locusts secreted by the entomopathogenic fungus Beauveria bassiana. Mycol Res 108, 441–452.
[51] Roberts, D., 1989. World picture of biological control of insects by fungi. Memorias do Instuto Oswaldo Cruz 84, 89−100.
[52] Santamarina, M.P., Rosello, J., Lacer, R., Sanchis, V., 2004. Actividad antagonista de Penicillium oxalicum Corrie and Thom, Penicillium decumbens Thom y Trichoderma harzianum Rifai frente a hongos, bacterias e insectos in vitro. Revista Iberoamericana de Micología 19, 99-103.
[53] Sathya, A., Vijayabharathi, R., Kumari, B.R., Srinivas, V., Sharma, H.C., Palanisamy Sathyadevi, P., Gopalakrishnan, S., 2016. Assessment of a diketopiperazine, cyclo(Trp-Phe) from treptomyces griseoplanus SAI-25 againt cotton bollworm, Helicoverpa armigera Lepidoptera: Noctuidae). Appl Entomol Zool. 51, 11.
[54] Socolsky, C., Fascio, M.L., D’Accorso, N.B., Salvatore, A., Willink, E., Asakawa, Y., Bardón, A., 2008. Effects of p-vinylphenyl glycosides and other related compounds on the oviposition behavior of Ceratitis capitata. Journal of chemical ecology 34, 539-548.
[55] Sosa, A., Costa, M., Salvatore, A., Bardón, A., Borkosky, S. and Vera, N. (2017). Insecticidal effects of eudesmanes from Pluchea sagittalis (Asteraceae) on Spodoptera frugiperda and Ceratitis capitata. International Journal of Environment, Agriculture and Biotechnology, 2(1), pp.361-369, ISSN: 2456-1878
[56] Stefanazzi, N., Stadler, T., Ferrero, A., 2011. Repellent and feeding deterrent activity of essential oils against the stored–grain pests Tribolium castaneum (Coleoptera: Tenebrionidae) and Sitophilus oryzae (Coleoptera: Curculionidae). Pest Manag Sci 67, 639–646.
[57] Stefanazzi, N., Gutierrez, M., Stadler, T., Bonini, A., Ferrero, A., 2006. Actividad biológica del aceite esencial de Tagetes terniflora Kunth (Ateraceae) en Tribolium castaneum Herbst (Insecto, Coleoptera, Tenebrionidae). Boletín de Sanidad Vegetal Plagas 32: 439-447.
[58] Supakdamrongkul, P., Bhumiratana, A., Wiwat, C. 2010. Characterization of an extracellular lipase from the biocontrol fungus, Nomuraea rileyi MJ, and its toxicity toward Spodoptera litura. J Invertebr Pathol., 105: 228-35.
[59] Vera N, Misico R, Gonzalez M, Asakawa Y, Bardon A (2008) Eudesmanes from Pluchea sagittalis. Their antifeedant activity on Spodoptera frugiperda. Phytochemistry 69: 1689–1694.
[60] Wang, G., Dai, S., Chen, M., Wu, H., Xie, L., Luo, X., Li, X., 2010. Two diketopiperazine cyclo(pro-phe) isomers from marine bacteria Bacillus subtilis sp. 13-2. Chem Nat Compd 46, 583.
[61] Wasti, S.S., Hartmann, G.C., 1978. Host-parasite interactions between larvae of the gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantridae) and the entomogenous fungus, Nomuraea rileyi (Farlow) Samson (Monilials: Moniliaceae). Appl Entomol Zool (Jpn) 1323–28.
[62] Willink, E.; Costilla, M.; Osores, V., 1990. Principales plagas del maíz: Daños, pérdidas y recomendaciones para la siembra. Avance Agroindustrial 42, 17-19.
[63] Wyckhuys, K.A., O'Neil, R.J., 2006. Population dynamics of Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) and associated arthropod natural enemies in Honduran subsistence maize. Crop Protection 25, 1180-1190.
[64] Yan, P., Song, Y., Sakuno, E., Nakajima, H., Nakagawa, H., Yabe, K., 2004. Cyclo ( L -Leucyl- L -Prolyl) Produced by Achromobacter xylosoxidans Inhibits Aflatoxin Production by Aspergillus parasiticus. Applied and Environmental Microbiology 70, 7466–7473.
[65] Yasui, H., Kato, A., Yazawa, M., 1998. Antifeedants to armyworm, Spodoptera litura and Pseudaletia separata, from bitter gourd leaves, Momordica charantia. Journal of Chemical Ecology 24, 803-813.
[66] Ye, M.Z., Han, G.Y., Fu, C.L., Bao, J.R., 1993. Insecticidal toxin produced by the entomogenous fungus Nomuraea rileyi. Acta Agric. Univ. Zheijian., 19, 76-79.

Total View: 588 Downloads: 44 Page No: 1586-1596


Cite this Article:

MLA

Karenina Marcinkevicius, Analia Salvatore, Alicia Bardon, Elena Cartagena,Mario Arena, Nancy Vera et al."Insecticidal activities of diketopiperazines of Nomuraea rileyi entomopathogenic fungus". International Journal of Environment Agriculture and Biotechnology(ISSN: 2456-1878),vol 2, no. 4, 2017, pp.1586-1596 AI Publications doi:10.22161/ijeab/2.4.18

APA

Karenina Marcinkevicius, Analia Salvatore, Alicia Bardon, Elena Cartagena,Mario Arena, Nancy Vera, P.(2017).Insecticidal activities of diketopiperazines of Nomuraea rileyi entomopathogenic fungus. International Journal of Environment Agriculture and Biotechnology(ISSN: 2456-1878).2(4), 1586-1596.10.22161/ijeab/2.4.18

Chicago

Karenina Marcinkevicius, Analia Salvatore, Alicia Bardon, Elena Cartagena,Mario Arena, Nancy Vera, P.(2017).Insecticidal activities of diketopiperazines of Nomuraea rileyi entomopathogenic fungus. International Journal of Environment Agriculture and Biotechnology(ISSN: 2456-1878).2(4), pp.1586-1596.

Harvard

Karenina Marcinkevicius, Analia Salvatore, Alicia Bardon, Elena Cartagena,Mario Arena, Nancy Vera. 2017."Insecticidal activities of diketopiperazines of Nomuraea rileyi entomopathogenic fungus". International Journal of Environment Agriculture and Biotechnology(ISSN: 2456-1878).2(4):1586-1596.Doi:10.22161/ijeab/2.4.18

IEEE

Karenina Marcinkevicius, Analia Salvatore, Alicia Bardon, Elena Cartagena,Mario Arena, Nancy Vera."Insecticidal activities of diketopiperazines of Nomuraea rileyi entomopathogenic fungus", International Journal of Environment Agriculture and Biotechnology,vol.2,no. 4, pp.1586-1596,2017.

Bibtex

@article { kareninamarcinkevicius2017insecticidal,
title={Insecticidal activities of diketopiperazines of Nomuraea rileyi entomopathogenic fungus},
author={Karenina Marcinkevicius, Analia Salvatore, Alicia Bardon, Elena Cartagena,Mario Arena, Nancy Vera , R},
journal={International Journal of Environment Agriculture and Biotechnology},
volume={2},
year= {2017} ,
}